Encapsulated Silicon Nitride Nanobeam Cavity for Hybrid Nanophotonics

被引:46
作者
Fryett, Taylor K. [1 ]
Chen, Yueyang [1 ]
Whitehead, James [1 ]
Peycke, Zane Matthew [2 ]
Xu, Xiaodong [2 ,3 ]
Majumdar, Arka [1 ,2 ]
机构
[1] Univ Washington, Elect Engn, Seattle, WA 98189 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98189 USA
[3] Univ Washington, Mat Sci & Engn, Seattle, WA 98189 USA
基金
美国国家科学基金会;
关键词
Photonic crystal cavity; layered materials; hybrid nanophotonics; QUANTUM EMITTERS; QUALITY-FACTOR; MONOLAYER; NANOCAVITY; EXCITONS;
D O I
10.1021/acsphotonics.8b00036
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Most existing implementations of silicon nitride photonic crystal cavities rely on suspended membranes due to their low refractive index. Such floating membranes are not mechanically robust, making them suboptimal for developing a hybrid optoelectronic platform where new materials, such as layered 2D materials, are transferred onto prefabricated optical cavities. To address this issue, we design and fabricate a silicon nitride nanobeam resonator where the silicon nitride membrane is encapsulated by material with a refractive index of similar to 1.5, such as silicon dioxide or PMMA. The theoretically calculated quality factor of the cavities can be as large as 10(s), with a mode-volume of, similar to 2.S(lambda/n)(3). We fabricated the cavity and measured the transmission spectrum with the highest quality factor reaching 7000. We also successfully transferred monolayer tungsten diselenide on the encapsulated silicon nitride nanobeam and demonstrated coupling of the cavity with both the monolayer exciton and the defect emissions.
引用
收藏
页码:2176 / +
页数:11
相关论文
共 30 条
[1]   A strong electro-optically active lead-free ferroelectric integrated on silicon [J].
Abel, Stefan ;
Stoeferle, Thilo ;
Marchiori, Chiara ;
Rossel, Christophe ;
Rossell, Marta D. ;
Erni, Rolf ;
Caimi, Daniele ;
Sousa, Marilyne ;
Chelnokov, Alexei ;
Offrein, Bert J. ;
Fompeyrine, Jean .
NATURE COMMUNICATIONS, 2013, 4
[2]   Refractive index measurements of poly(methyl methacrylate) (PMMA) from 0.4-1.6 μm [J].
Beadie, G. ;
Brindza, Michael ;
Flynn, Richard A. ;
Rosenberg, A. ;
Shirk, James S. .
APPLIED OPTICS, 2015, 54 (31) :F139-F143
[3]   Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor [J].
Branny, Artur ;
Kumar, Santosh ;
Proux, Raphael ;
Gerardot, Brian D. .
NATURE COMMUNICATIONS, 2017, 8
[4]  
Chen R, 2011, NAT PHOTONICS, V5, P170, DOI [10.1038/nphoton.2010.315, 10.1038/NPHOTON.2010.315]
[5]   Solution-processed, high-performance light-emitting diodes based on quantum dots [J].
Dai, Xingliang ;
Zhang, Zhenxing ;
Jin, Yizheng ;
Niu, Yuan ;
Cao, Hujia ;
Liang, Xiaoyong ;
Chen, Liwei ;
Wang, Jianpu ;
Peng, Xiaogang .
NATURE, 2014, 515 (7525) :96-99
[6]  
Fryett T. K., 2016, ARXIV160703548
[7]   Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe [J].
Gan, Xue-Tao ;
Zhao, Chen-Yang ;
Hu, Si-Qi ;
Wang, Tao ;
Song, Yu ;
Li, Jie ;
Zhao, Qing-Hua ;
Jie, Wan-Qi ;
Zhao, Jian-Lin .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7 :17126-17126
[8]   Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity [J].
Gan, Xuetao ;
Gao, Yuanda ;
Mak, Kin Fai ;
Yao, Xinwen ;
Shiue, Ren-Jye ;
van der Zande, Arend ;
Trusheim, Matthew E. ;
Hatami, Fariba ;
Heinz, Tony F. ;
Hone, James ;
Englund, Dirk .
APPLIED PHYSICS LETTERS, 2013, 103 (18)
[9]  
Hammer S., 2017, ARXIV 1706 10134
[10]  
He YM, 2015, NAT NANOTECHNOL, V10, P497, DOI [10.1038/nnano.2015.75, 10.1038/NNANO.2015.75]