Hypercomplex structures on Courant algebroids

被引:5
作者
Stienon, Mathieu [1 ,2 ]
机构
[1] Univ Paris Diderot, Inst Math Jussieu, CNRS, UMR 7586, F-75205 Paris 13, France
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1016/j.crma.2009.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hypercomplex Structures on Courant algebroids unify holomorphic symplectic structures and usual hypercomplex structures. In this Note, we prove the equivalence of two characterizations of hypercomplex structures oil Courant algebroids, one in terms of Nijenhuis concomitants and the other in terms of (almost) torsionfree connections for which each of the three complex structures is parallel. To cite this article: M. Stienon, C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:545 / 550
页数:6
相关论文
共 7 条
[1]   Generalized hyper-Kahler geometry and supersymmetry [J].
Bredthauer, Andreas .
NUCLEAR PHYSICS B, 2007, 773 (03) :172-183
[2]   DIRAC MANIFOLDS [J].
COURANT, TJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :631-661
[3]  
EZHUTHACHAN B, 2007, J HIGH ENERGY PHYS
[4]   Manin triples for lie bialgebroids [J].
Liu, ZJ ;
Weinstein, A ;
Xu, P .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (03) :547-574
[5]  
Obata M., 1956, Jpn. J. Math, V26, P43, DOI DOI 10.4099/JJM1924.26.043
[6]  
Yano K, 1972, HOKKAIDO MATH J, V1, P63, DOI 10.14492/hokmj/1381759039
[7]  
Yano K., 1973, J DIFF H GEOM, V8, P341