Multilevel Fast Multipole Method for Higher Order Discretizations

被引:27
作者
Borries, Oscar [1 ,2 ]
Meincke, Peter [1 ]
Jorgensen, Erik [1 ]
Hansen, Per Christian [2 ]
机构
[1] TICRA, DK-1201 Copenhagen, Denmark
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
关键词
Fast multipole method; higher order basis functions; integral equations; LEGENDRE BASIS FUNCTIONS; ELECTROMAGNETIC SCATTERING; INTEGRAL-EQUATIONS; ALGORITHM; EXPANSION;
D O I
10.1109/TAP.2014.2330582
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The multi-level fast multipole method (MLFMM) for a higher order (HO) discretization is demonstrated on high-frequency (HF) problems, illustrating for the first time how an efficient MLFMM for HO can be achieved even for very large groups. Applying several novel ideas, beneficial to both lower order and higher order discretizations, results from a low-memory, high-speed MLFMM implementation of a HO hierarchical discretization are shown. These results challenge the general view that the benefits of HO and HF-MLFMM cannot be combined.
引用
收藏
页码:4695 / 4705
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2008, GRASP TECHNICAL DESC
[2]  
Coifman R., 1993, IEEE Antennas and Propagation Magazine, V35, P7, DOI 10.1109/74.250128
[3]  
Donepudi KC, 2000, IEEE T ANTENN PROPAG, V48, P1192, DOI 10.1109/8.884486
[4]   A grid-robust higher-order multilevel fast multipole algorithm for analysis of 3-D scatterers [J].
Donepudi, KC ;
Jin, JM ;
Chew, WC .
ELECTROMAGNETICS, 2003, 23 (04) :315-330
[5]   A higher order parallelized multilevel fast multipole algorithm for 3-D scattering [J].
Donepudi, KC ;
Jin, JM ;
Velamparambil, S ;
Song, JM ;
Chew, WC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (07) :1069-1078
[6]   A diagonalized multilevel fast multipole method with spherical harmonics expansion of the k-space integrals [J].
Eibert, TF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (02) :814-817
[7]  
Gibson W. C., 2007, The Method of Moments in Electromagnetics
[8]   Higher order interpolatory vector bases for computational electromagnetics [J].
Graglia, RD ;
Wilton, DR ;
Peterson, AF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :329-342
[9]   MATRIX METHODS FOR FIELD PROBLEMS [J].
HARRINGTON, RF .
PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (02) :136-+
[10]   Error control of the translation operator in 3D MLFMA [J].
Hastriter, ML ;
Ohnuki, S ;
Chew, WC .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 37 (03) :184-188