Bayesian Unsupervised Learning with Multiple Data Types

被引:8
作者
Agius, Phaedra [1 ]
Ying, Yiming [2 ]
Campbell, Colin [2 ]
机构
[1] MSKCC, New York, NY USA
[2] Univ Bristol, Bristol BS8 1TH, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
multiple datasets; correspondence model; Bayesian learning; unsupervised learning; clusters; breast cancer; cancer subtypes; genes; microRNA; GENE-EXPRESSION DATA; BREAST-CANCER; GRAPHICAL MODELS; MICRORNA EXPRESSION; MICROARRAY ANALYSIS; FRAMEWORK; IDENTIFICATION; METASTASIS; SUPPRESSOR; REVEALS;
D O I
10.2202/1544-6115.1441
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We propose Bayesian generative models for unsupervised learning with two types of data and an assumed dependency of one type of data on the other. We consider two algorithmic approaches, based on a correspondence model, where latent variables are shared across datasets. These models indicate the appropriate number of clusters in addition to indicating relevant features in both types of data. We evaluate the model on artificially created data. We then apply the method to a breast cancer dataset consisting of gene expression and microRNA array data derived from the same patients. We assume partial dependence of gene expression on microRNA expression in this study. The method ranks genes within subtypes which have statistically significant abnormal expression and ranks associated abnormally expressing microRNA. We report a genetic signature for the basal-like subtype of breast cancer found across a number of previous gene expression array studies. Using the two algorithmic approaches we find that this signature also arises from clustering on the microRNA expression data and appears derivative from this data.
引用
收藏
页数:29
相关论文
共 37 条
[1]  
Attias H, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P21
[2]  
Attias H, 2000, ADV NEUR IN, V12, P209
[3]  
Beal MJ, 2003, BAYESIAN STATISTICS 7, P453
[4]  
Bi J., 2004, ACM SIGKDD INT C KNO, P521
[5]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[6]   MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype [J].
Blenkiron, Cherie ;
Goldstein, Leonard D. ;
Thorne, Natalie P. ;
Spiteri, Inmaculada ;
Chin, Suet-Feung ;
Dunning, Mark J. ;
Barbosa-Morais, Nuno L. ;
Teschendorff, Andrew E. ;
Green, Andrew R. ;
Ellis, Ian O. ;
Tavare, Simon ;
Caldas, Carlos ;
Miska, Eric A. .
GENOME BIOLOGY, 2007, 8 (10)
[7]   MicroRNA expression in canine mammary cancer [J].
Boggs, R. Michelle ;
Wright, Zachary M. ;
Stickney, Mark J. ;
Porter, Weston W. ;
Murphy, Keith E. .
MAMMALIAN GENOME, 2008, 19 (7-8) :561-569
[8]  
CARRIVICK, 2006, THESIS U BRISTOL UK
[9]   Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques [J].
Carrivick, L. ;
Rogers, S. ;
Clark, J. ;
Campbell, C. ;
Girolami, M. ;
Cooper, C. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (08) :367-381
[10]   Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1 [J].
Carroll, JS ;
Liu, XS ;
Brodsky, AS ;
Li, W ;
Meyer, CA ;
Szary, AJ ;
Eeckhoute, J ;
Shao, WL ;
Hestermann, EV ;
Geistlinger, TR ;
Fox, EA ;
Silver, PA ;
Brown, M .
CELL, 2005, 122 (01) :33-43