Exact solution of coupled Schrodinger equations in a stationary n-state exponential model

被引:2
作者
Teubner, Max [1 ]
机构
[1] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 01期
关键词
D O I
10.1103/PhysRevA.74.012704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The n-state exponential model refers to coupled Schrodinger equations with potential V-ij(x)=U-i delta(ij)+V(ij)e(-alpha x). Exact solutions in terms of Meijer's G functions are obtained, provided the V-ij factorize according to V-ij=+/- ViVj. The nonadiabatic transition matrix N is determined.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Exact stationary solutions for the translationally invariant discrete nonlinear Schrodinger equations [J].
Dmitriev, S. V. ;
Kevrekidis, P. G. ;
Yoshikawa, N. ;
Frantzeskakis, D. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (08) :1727-1746
[22]   Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media [J].
Nakkeeran, K .
PHYSICAL REVIEW E, 2000, 62 (01) :1313-1321
[23]   NEW EXACT SOLUTIONS FOR COUPLED SCHRODINGER-BOUSSINESQ EQUATIONS [J].
Lu, Junliang ;
Hong, Xiaochun ;
Zhao, Qi .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (02) :741-765
[24]   AN EXACT STATIONARY SOLUTION OF EINSTEIN-MAXWELL EQUATIONS [J].
KRAMER, D ;
NEUGEBAUER, G .
ANNALEN DER PHYSIK, 1969, 24 (1-2) :59-+
[25]   Analytic solution of two-state time-independent coupled Schrödinger equations in an exponential model [J].
Division of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan ;
不详 .
Phys Rev A, 3 (2486-2489)
[26]   EXACT ANALYTICAL SOLUTION OF COUPLED LANDAU EQUATIONS [J].
SHIVAMOGGI, BK .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (07) :306-308
[27]   A dynamic N-state markov channel model for WMBAN [J].
Yang, Yihuai .
BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 :54-55
[28]   Ground state solutions for planar coupled system involving nonlinear Schrodinger equations with critical exponential growth [J].
Wei, Jiuyang ;
Lin, Xiaoyan ;
Tang, Xianhua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) :9062-9078
[29]   Darboux Transformation and N-Soliton Solution for the Coupled Modified Nonlinear Schrodinger Equations [J].
Zhang, Hai-Qiang .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (12) :711-722
[30]   Numerical approximation of solution for the coupled nonlinear Schrodinger equations [J].
Chen, Juan ;
Zhang, Lu-ming .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02) :435-450