Exact solution of coupled Schrodinger equations in a stationary n-state exponential model

被引:2
|
作者
Teubner, Max [1 ]
机构
[1] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 01期
关键词
D O I
10.1103/PhysRevA.74.012704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The n-state exponential model refers to coupled Schrodinger equations with potential V-ij(x)=U-i delta(ij)+V(ij)e(-alpha x). Exact solutions in terms of Meijer's G functions are obtained, provided the V-ij factorize according to V-ij=+/- ViVj. The nonadiabatic transition matrix N is determined.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Analytic solution of two-state time-independent coupled Schrodinger equations in an exponential model
    Osherov, VI
    Nakamura, H
    PHYSICAL REVIEW A, 1999, 59 (03): : 2486 - 2489
  • [2] Exact periodic solution in coupled nonlinear Schrodinger equations
    Li Qi-Liang
    Chen Jun-Lang
    Sun Li-Li
    Yu Shu-Yi
    Qian Sheng
    CHINESE PHYSICS, 2007, 16 (06): : 1545 - 1548
  • [3] Exact periodic solution in coupled nonlinear Schrodinger equations
    Institute of Telecommunication and Information Systems, School of Communication, Hangzhou Dianzi University, Hangzhou 310037, China
    Chin. Phys., 2007, 6 (1545-1548):
  • [4] COMMENT ON AN EXACT SOLUTION OF THE COUPLED NONLINEAR SCHRODINGER-EQUATIONS
    KAPOR, D
    SKRINJAR, M
    STOJANOVIC, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : 2419 - 2421
  • [5] Exact analytical solution for coupled time-independent Schrodinger equations with certain model potentials
    Zhu, CY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (06): : 1293 - 1303
  • [7] AN EXACT STATIONARY SOLUTION OF EINSTEINS EQUATIONS
    BONNOR, WB
    SWAMINARAYAN, NS
    ZEITSCHRIFT FUR PHYSIK, 1965, 186 (03): : 222 - +
  • [8] The stationary equations of a coupled nonlinear Schrodinger system
    Wright, OC
    PHYSICA D, 1999, 126 (3-4): : 275 - 289
  • [9] Stationary equations of a coupled nonlinear Schrodinger system
    Phys D Nonlinear Phenom, 3-4 (275-289):
  • [10] Exact stationary wave patterns in three coupled nonlinear Schrodinger/Gross-Pitaevskii equations
    Yan, Zhenya
    Chow, K. W.
    Malomed, Boris A.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3013 - 3019