p-Supersolvability and actions on p-groups stabilizing certain subgroups

被引:43
作者
Berkovich, Yakov [1 ]
Isaacs, I. M. [2 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
p-Supersolvable; p-Nilpotent; S-semipermutable; FINITE-GROUPS; CRITERION;
D O I
10.1016/j.jalgebra.2014.04.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group having a noncyclic Sylow p-subgroup of order exceeding p(e), where e >= 3. If every noncyclic subgroup of G of order p(e) is normal in G, we show that G is p-supersolvable, and in fact we prove this under the much weaker hypothesis that the noncyclic subgroups of order p(e) are S-semipermutable in G. The key to the proof is to study the action of a group A on a p-group P under the condition that every noncyclic subgroup of P with order p(e) is stabilized by A. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 94
页数:13
相关论文
共 6 条
[1]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[2]   Semipermutable π-subgroups [J].
Isaacs, I. M. .
ARCHIV DER MATHEMATIK, 2014, 102 (01) :1-6
[3]  
Isaacs I. M., 2008, FINITE GROUP THEORY
[4]   A CRITERION FOR THE p-SUPERSOLUBILITY OF FINITE GROUPS [J].
Lukyanenko, Vladimir O. ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (01) :17-26
[5]   Complemented subgroups and p-nilpotence in finite groups [J].
Qiao, Shouhong ;
Isaacs, I. M. ;
Li, Yangming .
ARCHIV DER MATHEMATIK, 2012, 98 (05) :403-411
[6]   A CRITERION OF p-NILPOTENCY OF FINITE GROUPS [J].
Zhang, Xinjian ;
Li, Xianhua .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) :3652-3657