Limit Cycles Near a Piecewise Smooth Generalized Homoclinic Loop with a Nonelementary Singular Point

被引:2
作者
Liang, Feng [1 ]
Yang, Junmin [2 ]
机构
[1] Anhui Normal Univ, Inst Math, Wuhu 241000, Peoples R China
[2] Hebei Normal Univ, Inst Math, Shijiazhuang 050024, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 13期
基金
中国国家自然科学基金;
关键词
Limit cycle; piecewise Hamiltonian system; generalized homoclinic loop; Melnikov method; BIFURCATIONS;
D O I
10.1142/S021812741550176X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with limit cycle bifurcations by perturbing a piecewise smooth Hamiltonian system with a generalized homoclinic loop passing through a nonelementary singular point. We first give an expansion of the first Melnikov function corresponding to a period annulus near the generalized homoclinic loop. Then, based on the first coefficients in the expansion we obtain a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered.
引用
收藏
页数:22
相关论文
共 25 条
[1]  
Andronov A. A., 1965, THEORY OSCILLATORS
[2]  
[Anonymous], 2010, INT J BIFURCATION CH
[3]  
[Anonymous], 1988, Mathematics and its Applications (Soviet Series), DOI DOI 10.1007/978-94-015-7793-9
[4]   Bifurcation and chaos near sliding homoclinics [J].
Battelli, Flaviano ;
Feckan, Michal .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2227-2262
[5]  
Budd CJ., 1996, NONLINEAR MATH ITS A
[6]   Limit cycles bifurcate from centers of discontinuous quadratic systems [J].
Chen, Xingwu ;
Du, Zhengdong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) :3836-3848
[7]   Degenerate Hopf bifurcations in discontinuous planar systems [J].
Coll, B ;
Gasull, A ;
Prohens, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (02) :671-690
[8]  
di Bernardo M, 1998, NONLINEARITY, V11, P859, DOI 10.1088/0951-7715/11/4/007
[9]   Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators [J].
Di Bernardo, M ;
Kowalczyk, P ;
Nordmark, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10) :2935-2948
[10]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4