Some exceptional sets of Borel-Bernstein theorem in continued fractions

被引:12
作者
Fang, Lulu [1 ]
Ma, Jihua [2 ]
Song, Kunkun [2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Univ Paris Est, LAMA UMR 8050, UPEMLV, UPEC,CNRS, F-94010 Creteil, France
基金
中国国家自然科学基金;
关键词
Continued fractions; Partial quotients; Hausdorff dimension; HAUSDORFF DIMENSION; PARTIAL QUOTIENTS; SEQUENCES; GROWTH; DIGIT; SUMS;
D O I
10.1007/s11139-020-00320-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [a(1)(x), a(2)( x), a(3)(x), ... ] denote the continued fraction expansion of a real number x is an element of [0, 1). This paper is concerned with certain exceptional sets of theBorel-Bernstein Theorem on the growth rate of {a(n)(x)}(n >= 1). As a main result, the Hausdorff dimension of the set E-sup(psi) = {x is an element of [0, 1) : lim sup(n ->infinity) log a(n)(x)/psi(n) = 1} is determined, where psi : N -> R+ tends to infinity as n ->infinity.
引用
收藏
页码:891 / 909
页数:19
相关论文
共 25 条
[1]  
Bernstein F, 1912, MATH ANN, V71, P417
[2]  
Borel, 1909, RENDICONTI CIRCOLO M, V2, P247, DOI [10.1007/BF03019651, DOI 10.1007/BF03019651]
[3]   A problem of probabilities relative to continued fractions [J].
Borel, E .
MATHEMATISCHE ANNALEN, 1912, 72 :578-584
[4]   The growth speed of digits in infinite iterated function systems [J].
Cao, Chun-Yun ;
Wang, Bao-Wei ;
Wu, Jun .
STUDIA MATHEMATICA, 2013, 217 (02) :139-158
[5]   HAUSDORFF DIMENSION OF SETS OF CONTINUED FRACTIONS [J].
CUSICK, TW .
QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163) :277-286
[6]  
Falconer K., 2014, Fractal Geometry: Mathematical Foundations and Applications
[7]   On Khintchine exponents and Lyapunov exponents of continued fractions [J].
Fan, Ai-Hua ;
Liao, Ling-Min ;
Wang, Bao-Wei ;
Wu, Jun .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :73-109
[8]   On the fast Khintchine spectrum in continued fractions [J].
Fan, Aihua ;
Liao, Lingmin ;
Wang, Baowei ;
Wu, Jun .
MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4) :329-340
[9]  
Fang L.-L., ARXIV160804326
[10]  
Fang L.-L., ARXIV191101821