Ferromagnetism in a two-component Bose-Hubbard model with synthetic spin-orbit coupling

被引:22
作者
Zhao, Jize [1 ,2 ]
Hu, Shijie [3 ]
Chang, Jun [4 ,5 ]
Zhang, Ping [1 ,2 ]
Wang, Xiaoqun [6 ,7 ,8 ]
机构
[1] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Kavli Inst Theoret Phys, Beijing 100190, Peoples R China
[6] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[7] Renmin Univ China, Beijing Lab Optoelect Funct Mat & Micronano Devic, Beijing 100872, Peoples R China
[8] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 04期
关键词
EINSTEIN CONDENSATION; ENTANGLEMENT; SUPERFLUID; INSULATOR; LATTICE; GAS;
D O I
10.1103/PhysRevA.89.043611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the effect of the synthetic spin-orbit coupling in a two-component Bose-Hubbard model in one dimension by employing the density-matrix renormalization group method. A ferromagnetic long-range order emerges in both Mott-insulator and superfluid phases resulting from the spontaneous breaking of the Z(2) symmetry, when the spin-orbit coupling term becomes comparable to the hopping kinetic energy and the intercomponent interaction is smaller than the intracomponent one as well. This effect is expected to be detectable with the present realization of the synthetic spin-orbit coupling in experiments.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Two-state Bose-Hubbard model in the hard-core boson limit [J].
Stasyuk, I. V. ;
Velychko, O. V. .
CONDENSED MATTER PHYSICS, 2011, 14 (01)
[22]   Hubbard model on the kagome lattice with time-reversal invariant flux and spin-orbit coupling [J].
Titvinidze, Irakli ;
Legendre, Julian ;
Le Hur, Karyn ;
Hofstetter, Walter .
PHYSICAL REVIEW B, 2022, 105 (23)
[23]   Two-channel Bose-Hubbard model of atoms at a Feshbach resonance [J].
Schneider, Philipp-Immanuel ;
Saenz, Alejandro .
PHYSICAL REVIEW A, 2013, 87 (05)
[24]   Two-body repulsive bound pairs in a multibody interacting Bose-Hubbard model [J].
Mondal, Suman ;
Kshetrimayum, Augustine ;
Mishra, Tapan .
PHYSICAL REVIEW A, 2020, 102 (02)
[25]   π-Phase shift in a two-dimensional hardcore Bose-Hubbard model with imposed stripes [J].
Xu, S. X. ;
Ying, T. .
PHYSICS LETTERS A, 2024, 517
[26]   Chaos in the Bose-Hubbard model and random two-body Hamiltonians [J].
Pausch, Lukas ;
Carnio, Edoardo G. ;
Buchleitner, Andreas ;
Rodriguez, Alberto .
NEW JOURNAL OF PHYSICS, 2021, 23 (12)
[27]   Analysis of dynamical properties for the two-site Bose-Hubbard model with an algebraic method [J].
Meng Xiang-Jia ;
Feng Hai-Ran ;
Zheng Yu-Jun .
CHINESE PHYSICS B, 2014, 23 (04)
[28]   From antiferromagnetic ordering to magnetic textures in the two-dimensional Fermi-Hubbard model with synthetic spin-orbit interactions [J].
Minar, Jiri ;
Gremaud, Benoit .
PHYSICAL REVIEW B, 2013, 88 (23)
[29]   Time- and frequency-domain two-particle correlations of a driven dissipative Bose-Hubbard model [J].
Adhikary, Kingshuk ;
Dey, Anushree ;
Pal, Arpita ;
Mal, Subhanka ;
Deb, Bimalendu .
PHYSICAL REVIEW A, 2021, 103 (03)
[30]   Tensor-network study of correlation-spreading dynamics in the two-dimensional Bose-Hubbard model [J].
Kaneko, Ryui ;
Danshita, Ippei .
COMMUNICATIONS PHYSICS, 2022, 5 (01)