共 50 条
Design of a latent thermal energy storage system with embedded heat pipes
被引:55
|作者:
Nithyanandam, K.
[1
]
Pitchumani, R.
[1
]
机构:
[1] Virginia Tech, Dept Mech Engn, Adv Mat & Technol Lab, Blacksburg, VA 24061 USA
来源:
关键词:
Concentrating solar power;
Thermal energy storage;
Heat pipes;
System design;
System optimization;
Computational modeling;
PHASE-CHANGE MATERIALS;
OPTIMIZATION;
ENHANCEMENT;
D O I:
10.1016/j.apenergy.2014.03.025
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Thermal energy storage plays an important role in extending the operation of a concentrating solar power (CSP) plant to times when sufficient solar energy is unavailable for generation of electricity. Extending the CSP plant operation increases its capacity factor and can lead to reduction in the levelized cost of electricity equivalent to that of fossil-fueled power plants. In view of this, latent thermal energy storage (LTES) system embedded with gravity-assisted heat pipes is considered in the present study. Transient numerical simulations are presented and the influence of the design and operating parameters on the dynamic charge and discharge performance of the system is analyzed to identify operating windows that satisfy the U.S. Department of Energy SunShot Initiative targets, which include, storage cost less than $15/ kWh(t), round-trip exergetic efficiency greater than 95% and charge time less than 6 h for a minimum discharge period of 6 h. Overall, this study illustrates a methodology for design and optimization of LTES with embedded gravity assisted heat pipes (HP-TES) for a CSP plant operation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 280
页数:15
相关论文