Design of a latent thermal energy storage system with embedded heat pipes

被引:55
|
作者
Nithyanandam, K. [1 ]
Pitchumani, R. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Adv Mat & Technol Lab, Blacksburg, VA 24061 USA
关键词
Concentrating solar power; Thermal energy storage; Heat pipes; System design; System optimization; Computational modeling; PHASE-CHANGE MATERIALS; OPTIMIZATION; ENHANCEMENT;
D O I
10.1016/j.apenergy.2014.03.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal energy storage plays an important role in extending the operation of a concentrating solar power (CSP) plant to times when sufficient solar energy is unavailable for generation of electricity. Extending the CSP plant operation increases its capacity factor and can lead to reduction in the levelized cost of electricity equivalent to that of fossil-fueled power plants. In view of this, latent thermal energy storage (LTES) system embedded with gravity-assisted heat pipes is considered in the present study. Transient numerical simulations are presented and the influence of the design and operating parameters on the dynamic charge and discharge performance of the system is analyzed to identify operating windows that satisfy the U.S. Department of Energy SunShot Initiative targets, which include, storage cost less than $15/ kWh(t), round-trip exergetic efficiency greater than 95% and charge time less than 6 h for a minimum discharge period of 6 h. Overall, this study illustrates a methodology for design and optimization of LTES with embedded gravity assisted heat pipes (HP-TES) for a CSP plant operation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 280
页数:15
相关论文
共 50 条
  • [31] Design of sensible and latent heat thermal energy storage systems for concentrated solar power plants: Thermal performance analysis
    Liu, Ming
    Riahi, Soheila
    Jacob, Rhys
    Belusko, Martin
    Bruno, Frank
    RENEWABLE ENERGY, 2020, 151 : 1286 - 1297
  • [32] Convective Effects in a Latent Heat Thermal Energy Storage
    Fornarelli, Francesco
    Camporeale, Sergio Mario
    Fortunato, Bernardo
    HEAT TRANSFER ENGINEERING, 2021, 42 (01) : 1 - 22
  • [33] Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage
    Kurnia, Jundika C.
    Sasmito, Agus P.
    APPLIED ENERGY, 2018, 227 : 542 - 554
  • [34] Design optimization method for tube and fin latent heat thermal energy storage systems
    Raud, Ralf
    Cholette, Michael E.
    Riahi, Soheila
    Bruno, Frank
    Saman, Wasim
    Will, Geoffrey
    Steinberg, Theodore A.
    ENERGY, 2017, 134 : 585 - 594
  • [35] Pareto optimal design of a finned latent heat thermal energy storage unit using a novel hybrid technique
    Maleki, Hamid
    Ashrafi, Mehdi
    Ilghani, Nastaran Zandy
    Goodarzi, Marjan
    Muhammad, Taseer
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [36] Numerical study of dynamic melting enhancement in a latent heat thermal energy storage system
    Gasia, Jaume
    Groulx, Dominic
    Tay, N. H. Steven
    Cabeza, Luisa F.
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [37] Experimental study of storage capacity and discharging rate of latent heat thermal energy storage units
    Fang, Yuhang
    Xu, Hongtao
    Miao, Yubo
    Bai, Zhirui
    Niu, Jianlei
    Deng, Shiming
    APPLIED ENERGY, 2020, 275
  • [38] Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system
    Zhang, P.
    Ma, F.
    Xiao, X.
    APPLIED ENERGY, 2016, 173 : 255 - 271
  • [39] Design and optimization of a vertical shell-and-tube latent heat thermal energy storage system via discontinuous fins
    Tang, Songzhen
    Song, Yuling
    Liu, Pinwei
    Wu, Xuehong
    Xu, Yanyan
    Thou, Junjie
    Li, Xiuzhen
    RENEWABLE ENERGY, 2025, 243
  • [40] Computational evaluation of a latent heat energy storage system
    Reid, Michael R.
    Scharfe, David B.
    Webb, Rebecca N.
    SOLAR ENERGY, 2013, 95 : 99 - 105