Curvelet-based method for orientation estimation of particles from optical images

被引:8
|
作者
Sampo, Jouni [1 ,2 ]
Takalo, Jouni [3 ]
Siltanen, Samuli [2 ]
Miettinen, Arttu [3 ]
Lassas, Matti [2 ]
Timonen, Jussi [3 ]
机构
[1] Lappeenranta Univ Technol, Dept Math & Phys, Lappeenranta 53850, Finland
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[3] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
curvelet; orientation; multiscale; anisotropic; fiber; TRANSFORM; TOMOGRAPHY;
D O I
10.1117/1.OE.53.3.033109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method based on the curvelet transform is introduced to estimate the orientation distribution from two-dimensional images of small anisotropic particles. Orientation of fibers in paper is considered as a particular application of the method. Theoretical aspects of the suitability of this method are discussed and its efficiency is demonstrated with simulated and real images of fibrous systems. Comparison is made with two traditionally used methods of orientation analysis, and the new curvelet-based method is shown to perform better than these traditional methods. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Curvelet-based method for orientation estimation of particles
    Sampo, Jouni
    Takalo, Jouni
    Siltanen, Samuli
    Miettinen, Arttu
    Lassas, Matti
    Timonen, Jussi
    WAVELETS AND SPARSITY XV, 2013, 8858
  • [2] A CURVELET-BASED DISTANCE MEASURE FOR SEISMIC IMAGES
    Alaudah, Yazeed
    AlRegib, Ghassan
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4200 - 4204
  • [3] Curvelet-Based Classification of Brain MRI Images
    Damseh, Rafat
    Ahmad, M. Omair
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 446 - 454
  • [4] A Curvelet-Based Morphological Segmentation of Abdominal CT Images
    Sakalli, M.
    Pham, T. D.
    Lam, K. M.
    Yan, H.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 5542 - 5545
  • [5] A curvelet-based method to determine wave directions from nautical X-band radar images
    Guozhen Zha
    Qingyou He
    Changlong Guan
    Jitao Chen
    Acta Oceanologica Sinica, 2018, 37 : 11 - 19
  • [6] A curvelet-based method to determine wave directions from nautical X-band radar images
    Zha, Guozhen
    He, Qingyou
    Guan, Changlong
    Chen, Jitao
    ACTA OCEANOLOGICA SINICA, 2018, 37 (01) : 11 - 19
  • [7] A curvelet-based method to determine wave directions from nautical X-band radar images
    ZHA Guozhen
    HE Qingyou
    GUAN Changlong
    CHEN Jitao
    Acta Oceanologica Sinica, 2018, 37 (01) : 11 - 19
  • [8] CURVELET-BASED CHANGE DETECTION FOR MAN-MADE OBJECTS FROM SAR IMAGES
    Schmitt, Andreas
    Wessel, Birgit
    Roth, Achim
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2361 - 2364
  • [9] A Curvelet-based Lacunarity Approach for Ulcer Detection from Wireless Capsule Endoscopy Images
    Eid, Alexis
    Charisis, Vasileios S.
    Hadjileontiadis, Leontios J.
    Sergiadis, George D.
    2013 IEEE 26TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2013, : 273 - 278
  • [10] Forming Optimal Projection Images from Intra-Retinal Layers Using Curvelet-Based Image Fusion Method
    Jalili, Jalil
    Rabbani, Hossein
    Dehnavi, Alireza Mehri
    Kafieh, Raheleh
    Akhlaghi, Mohammadreza
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2020, 10 (02): : 76 - 85