Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts

被引:162
作者
Luo, Zhongyang [1 ]
Wang, Cheng [1 ]
Wei, Wei [1 ]
Xiao, Gang [1 ]
Ni, Mingjiang [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofluids; Direct absorption collection (DAC); Solar collector; Simulation model;
D O I
10.1016/j.ijheatmasstransfer.2014.03.072
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanofluids are engineered colloidal suspensions of nanoparticles in base fluids, which have good properties of radiation absorption and heat transfer and are a kind of potential working fluids for solar collector based on direct absorption collection (DAC) concepts. A simulation model of nanofluid solar collector was built based on DAC concepts by solving the radiative transfer equations of particulate media and combining conduction and convection heat transfer equations. The system efficiency and temperature distributions are analyzed by considering the absorption and scattering of nanoparticles and the absorption of the matrix. The simulation results were in accordance with the experiments'. The nanofluids improved the outlet temperature and the efficiency by 30-100 K and by 2-25% than the base fluid. The photothermal efficiency of a 0.01% graphite nanofluid is 122.7% of that of a coating absorbing collector. The study indicated that nanofluids, even of low-content, have good absorption of solar radiation, and can improve the outlet temperatures and system efficiencies. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 271
页数:10
相关论文
共 28 条
[1]  
[Anonymous], P ASME 2009 3 INT C
[2]   DEVELOPMENT OF A VOLUME HEAT-TRAP TYPE SOLAR COLLECTOR USING A FINE-PARTICLE SEMITRANSPARENT LIQUID SUSPENSION (FPSS) AS A HEAT VEHICLE AND HEAT-STORAGE MEDIUM - UNSTEADY, ONE-DIMENSIONAL HEAT-TRANSFER IN A HORIZONTAL FPSS LAYER HEATED BY THERMAL-RADIATION [J].
ARAI, N ;
ITAYA, Y ;
HASATANI, M .
SOLAR ENERGY, 1984, 32 (01) :49-56
[3]  
Beard J.T., 1978, J ENG POWER, V100, P9
[4]  
Buongiorno J., 2006, J HEAT TRANSFER, V128
[5]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[6]  
Cobble H., 1987, SOLAR ENERGY UTILIZA
[7]   IRRADIATION INTO TRANSPARENT SOLIDS + THERMAL TRAP EFFECT [J].
COBBLE, MH .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1964, 278 (06) :383-&
[8]  
Das S. K., 2008, Nanofluids: Science and Engineering, DOI [10.1002/9780470180693, DOI 10.1002/9780470180693]
[9]  
Fedorov AG, 2000, PHYS CHEM GLASSES, V41, P127
[10]   Heat transfer-A review of 2005 literature [J].
Goldstein, R. J. ;
Ibele, W. E. ;
Patankar, S. V. ;
Simon, T. W. ;
Kuehn, T. H. ;
Strykowski, P. J. ;
Tamma, K. K. ;
Heberlein, J. V. R. ;
Davidson, J. H. ;
Bischof, J. ;
Kulacki, F. A. ;
Kortshagen, U. ;
Garrick, S. ;
Srinivasan, V. ;
Ghosh, K. ;
Mittal, R. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (21-22) :4397-4447