This study investigated the antibacterial effects against Streptococcus mutans of a fine-hybrid resin composite (FH-RC; Tetric ceram), an ion-releasing resin composite (Ariston pHc), a self-curing glass ionomer cement (SC-GIC; Ketac-Molar), a resin-modified GIC (RM-GIC; Photac-Fil), and a zinc oxide eugenol cement (ZOE; IRM). In a novel assay, bacterial suspensions were placed into narrow 20-mul conical cavities within the materials. After 0, 4, 8, 24, 48 h and 1 week of incubation, the suspensions were removed from the restoratives and the numbers of viable bacteria were determined. After incubation periods of 8 h or more, all restorative materials except the FH-RC showed significant growth inhibition when compared with controls. The strongest antibacterial activity was observed with ZOE. The inhibitory effect of Ariston pHc was similar to that of the SC-GIC and the RM-GIC. In the second assay, growth inhibition was evaluated in liquid cultures by incubating eluates of the materials with suspensions of S. mutans. Bacterial growth was determined up to 6 h by measuring absorption at 600 nm. The most marked inhibitory effect was again observed with ZOE. The SC-GIC caused a significant inhibition at all time intervals but the FH-RC, the RM-GIC and Ariston pHc exhibited no significant antibacterial effects. It is recommended to employ more than one method for assessing the antibacterial potential of restorative materials. Long-term clinical trials are necessary to determine whether the antimicrobial effects of dental materials are able to reduce the risk of secondary caries formation. Copyright (C) 2002 S. Karger AG, Basel.