Topography-driven bionano-interactions on colloidal silica nanoparticles

被引:27
作者
Paula, Amauri J. [1 ]
Silveira, Camila P. [2 ]
Martinez, Diego Stefani T. [4 ,5 ]
Souza Filho, Antonio G. [1 ]
Romero, Fabian V. [3 ]
Fonseca, Leandro C. [4 ]
Tasic, Ljubica [3 ]
Alves, Oswaldo L. [4 ]
Duran, Nelson [2 ,6 ]
机构
[1] Univ Fed Ceara, Dept Phys, BR-60455900 Fortaleza, Ceara, Brazil
[2] Univ Estadual Campinas, Biol Chem Lab, BR-13083970 Sao Paulo, Brazil
[3] Univ Estadual Campinas, Dept Organ Chem, BR-13083970 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Inst Quim, Lab Solid State Chem, BR-13083970 Sao Paulo, Brazil
[5] CNPEM, Ctr Nacl Pesquisa Energia & Mat, Brazilian Nanotechnol Natl Lab, BR-13083970 Sao Paulo, Brazil
[6] Univ Fed ABC, Ctr Nat & Human Sci, BR-09210580 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
mesoporous silica; colloidal nanoparticles; biomolecules interaction; bovine serum albumin; alginate; protein corona; human blood plasma; DRUG-DELIVERY SYSTEM; SUPPORTED LIPID-BILAYERS; PROTEIN CORONA; SURFACE-COMPOSITION; PEPTIDE ADSORPTION; IN-VIVO; STABILITY; CELLS; SIZE; NANOCARRIERS;
D O I
10.1021/am405594q
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report here that the surface topography of colloidal mesoporous silica nanoparticles (MSNs) plays a key role on their bionano-interactions by driving the adsorption of biomolecules on the nanoparticle through a matching mechanism between the surface cavities characteristics and the biomolecules stereochemistry. This conclusion was drawn by analyzing the biophysicochemical properties of colloidal MSNs in the presence of single biomolecules, such as alginate or bovine serum albumin (BSA), as well as dispersed in a complex biofluid, such as human blood plasma. When dispersed in phosphate buffered saline media containing alginate or BSA, monodisperse spherical MSNs interact with linear biopolymers such as alginate and with a globular protein such as bovine serum albumin (BSA) independently of the surface charge sign (i.e. positive or negative), thus leading to a decrease in the surface energy and to the colloidal stabilization of these nanoparticles. In contrast, silica nanoparticles with irregular surface topographies are not colloidally stabilized in the presence of alginate but they are electrosterically stabilized by BSA through a sorption mechanism that implies reversible conformation changes of the protein, as evidenced by circular dichroism (CD). The match between the biomolecule size and stereochemistry with the nanoparticle surface cavities characteristics reflects on the nanoparticle surface area that is accessible for each biomolecule to interact and stabilize any non-rigid nanoparticles. On the other hand, in contact with variety of biomolecules such as those present in blood plasma (55%), MSNs are colloidally stabilized regardless of the topography and surface charge, although the identity of the protein corona responsible for this stabilization is influenced by the surface topography and surface charge. Therefore, the biofluid in which nanoparticles are introduced plays an important role on their physicochemical behavior synergistically with their inherent characteristics (e.g., surface topography).
引用
收藏
页码:3437 / 3447
页数:11
相关论文
共 59 条
[1]   Heparin-Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drug-Delivery System [J].
Argyo, Christian ;
Cauda, Valentina ;
Engelke, Hanna ;
Raedler, Joachim ;
Bein, Gregor ;
Bein, Thomas .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (02) :428-432
[2]   Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers [J].
Ashley, Carlee E. ;
Carnes, Eric C. ;
Epler, Katharine E. ;
Padilla, David P. ;
Phillips, Genevieve K. ;
Castillo, Robert E. ;
Wilkinson, Dan C. ;
Wilkinson, Brian S. ;
Burgard, Cameron A. ;
Kalinich, Robin M. ;
Townson, Jason L. ;
Chackerian, Bryce ;
Willman, Cheryl L. ;
Peabody, David S. ;
Wharton, Walker ;
Brinker, C. Jeffrey .
ACS NANO, 2012, 6 (03) :2174-2188
[3]  
Ashley CE, 2011, NAT MATER, V10, P389, DOI [10.1038/NMAT2992, 10.1038/nmat2992]
[4]   Probing BSA binding to citrate-coated gold nanoparticles and surfaces [J].
Brewer, SH ;
Glomm, WR ;
Johnson, MC ;
Knag, MK ;
Franzen, S .
LANGMUIR, 2005, 21 (20) :9303-9307
[5]   Selective Targeting Capability Acquired with a Protein Corona Adsorbed on the Surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles [J].
Caracciolo, Giulio ;
Cardarelli, Francesco ;
Pozzi, Daniela ;
Salomone, Fabrizio ;
Maccari, Giuseppe ;
Bardi, Giuseppe ;
Capriotti, Anna Laura ;
Cavaliere, Chiara ;
Papi, Massimiliano ;
Lagana, Aldo .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :13171-13179
[6]   Multiple Core-Shell Functionalized Colloidal Mesoporous Silica Nanoparticles [J].
Cauda, Valentina ;
Schlossbauer, Axel ;
Kecht, Johann ;
Zuerner, Andreas ;
Bein, Thomas .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (32) :11361-11370
[7]   Differential plasma protein binding to metal oxide nanoparticles [J].
Deng, Zhou J. ;
Mortimer, Gysell ;
Schiller, Tara ;
Musumeci, Anthony ;
Martin, Darren ;
Minchin, Rodney F. .
NANOTECHNOLOGY, 2009, 20 (45)
[8]   Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells [J].
Graf, Christina ;
Gao, Qi ;
Schuetz, Irene ;
Noufele, Christelle Njiki ;
Ruan, Wentao ;
Posselt, Uta ;
Korotianskiy, Elena ;
Nordmeyer, Daniel ;
Rancan, Fiorenza ;
Hadam, Sabrina ;
Vogt, Annika ;
Lademann, Juergen ;
Haucke, Volker ;
Ruehl, Eckart .
LANGMUIR, 2012, 28 (20) :7598-7613
[9]   One-Pot Synthesis of Mesoporous Silica Nanocarriers with Tunable Particle Sizes and Pendent Carboxylic Groups for Cisplatin Delivery [J].
Gu, Jinlou ;
Liu, Jiapeng ;
Li, Yongsheng ;
Zhao, Wenru ;
Shi, Jianlin .
LANGMUIR, 2013, 29 (01) :403-410
[10]   Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells [J].
Gualtieri, Maurizio ;
Skuland, Tonje ;
Iversen, Tore-Geir ;
Lag, Marit ;
Schwarze, Per ;
Bilanicova, Dagmar ;
Pojana, Giulio ;
Refsnes, Magne .
NANOTOXICOLOGY, 2012, 6 (07) :700-712