A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points

被引:40
作者
Lajnef, N. [1 ]
Burgueno, R. [1 ]
Borchani, W. [1 ]
Sun, Y. [1 ]
机构
[1] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
关键词
energy harvesting; energy conversion; negative stiffness; post-buckling; FEASIBILITY; BEAM;
D O I
10.1088/0964-1726/23/5/055005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer ' s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters ' natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (<< 1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Energy Harvesting From Vibrations With a Nonlinear Oscillator [J].
Barton, David A. W. ;
Burrow, Stephen G. ;
Clare, Lindsay R. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2010, 132 (02) :0210091-0210097
[2]   An energy harvester driven by colored noise [J].
Blystad, Lars-Cyril Julin ;
Halvorsen, Einar .
SMART MATERIALS AND STRUCTURES, 2011, 20 (02)
[3]   On the post-buckling behavior of bilaterally constrained plates [J].
Chai, H .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (11) :2911-2926
[4]   The post-buckling response of a bi-laterally constrained column [J].
Chai, H .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (07) :1155-+
[5]   Response of uni-modal duffing-type harvesters to random forced excitations [J].
Daqaq, Mohammed F. .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (18) :3621-3631
[6]   A Timoshenko beam model for cantilevered piezoelectric energy harvesters [J].
Dietl, J. M. ;
Wickenheiser, A. M. ;
Garcia, E. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (05)
[7]   Vibration energy harvesting with aluminum nitride-based piezoelectric devices [J].
Elfrink, R. ;
Kamel, T. M. ;
Goedbloed, M. ;
Matova, S. ;
Hohlfeld, D. ;
van Andel, Y. ;
van Schaijk, R. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (09)
[8]   Feasibility of structural monitoring with vibration powered sensors [J].
Elvin, Niell G. ;
Lajnef, Nizar ;
Elvin, Alex A. .
SMART MATERIALS AND STRUCTURES, 2006, 15 (04) :977-986
[9]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[10]   Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs [J].
Erturk, Alper ;
Renno, Jamil M. ;
Inman, Daniel J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (05) :529-544