Uniqueness and layer analysis for boundary blow-up solutions

被引:27
作者
Du, YH [1 ]
Guo, ZM
机构
[1] Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
[2] Henan Normal Univ, Dept Math, Xinxiang 453002, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2004年 / 83卷 / 06期
基金
澳大利亚研究理事会;
关键词
boundary blow-up solution; uniqueness; layer estimate; flat core;
D O I
10.1016/j.matpur.2004.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness for boundary blow-up solutions of the problem: Deltau = lambdaf(u) in Omega, u\partial derivativeOmega = infinity, with large lambda. Previous uniqueness results require a monotonicity assumption for f (u)/u in the entire range of the boundary blow-up solutions. By obtaining good boundary layer estimates for large lambda, we obtain uniqueness under much weaker assumptions on f (u). Our estimates for the layers of the boundary blow-up solutions have independent interest, and may have other applications. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:739 / 763
页数:25
相关论文
共 42 条
[31]   ON SOLUTIONS OF DELTA-U= F(U) [J].
KELLER, JB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :503-510
[32]  
KONTRATEV VA, 1990, DIFF EQUAT, V26, P345
[33]   ON A PROBLEM OF BIEBERBACH AND RADEMACHER [J].
LAZER, AC ;
MCKENNA, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (05) :327-335
[34]  
Lazer AC., 1994, Differential Integral Equations, V7, P1001
[35]  
Loewner C., 1974, Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers, P245
[36]   The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption [J].
Marcus, M ;
Véron, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (06) :689-731
[37]   Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations [J].
Marcus, M ;
Veron, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :237-274
[38]   Quasilinear elliptic equations with boundary blow-up [J].
Matero, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 69 :229-247
[39]   Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up [J].
McKenna, PJ ;
Reichel, W ;
Walter, W .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (07) :1213-1225
[40]  
Osserman R., 1957, Pacific J. Math., V7, P1641