Polarimetric measurements of single-photon geometric phases

被引:3
|
作者
Ortiz, O. [1 ]
Yugra, Y. [1 ]
Rosario, A. [1 ]
Sihuincha, J. C. [1 ]
Loredo, J. C. [2 ,3 ]
Andres, M. V. [4 ]
De Zela, F. [1 ]
机构
[1] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru
[2] Univ Queensland, Ctr Quantum Comp & Commun Technol, Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[4] Univ Valencia, Dept Fis Aplicada & Electromagnetismo, Valencia, Spain
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
关键词
PANCHARATNAM PHASE; SU(2) POLARIMETRY; QUANTUM; STATES; EVOLUTION; LIGHT;
D O I
10.1103/PhysRevA.89.012124
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report polarimetric measurements of geometric phases that are generated by evolving polarized photons along nongeodesic trajectories on the Poincare sphere. The core of our polarimetric array consists of seven wave plates that are traversed by a single-photon beam. With this array, any SU(2) transformation can be realized. By exploiting the gauge invariance of geometric phases under U(1) local transformations, we nullify the dynamical contribution to the total phase, thereby making the latter coincide with the geometric phase. We demonstrate our arrangement to be insensitive to various sources of noise entering it. This makes the single-beam, polarimetric array a promising, versatile tool for testing robustness of geometric phases against noise.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Optimization of periodic single-photon sources
    Adam, Peter
    Mechler, Matyas
    Santa, Imre
    Koniorczyk, Matyas
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [32] Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity
    Borkje, Kjetil
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [33] Ultrafast superconducting single-photon detector
    Goltsman, G.
    Korneev, A.
    Divochiy, A.
    Minaeva, O.
    Tarkhov, M.
    Kaurova, N.
    Seleznev, V.
    Voronov, B.
    Okunev, O.
    Antipov, A.
    Smirnov, K.
    Vachtomin, Yu.
    Milostnaya, I.
    Chulkova, G.
    JOURNAL OF MODERN OPTICS, 2009, 56 (15) : 1670 - 1680
  • [34] Plasmon enhanced single-photon detection
    Szekeres, Gabor
    Szenes, Andras
    Csete, Maria
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XI, 2013, 8809
  • [35] Computational Model of Single-Photon Near-Field Emission
    Tafur, Sergio
    Leuenberger, Michael N.
    QUANTUM INFORMATION AND COMPUTATION IX, 2011, 8057
  • [36] Controlling Single-Photon Emission with Ultrathin Transdimensional Plasmonic Films
    Bondarev, Igor, V
    ANNALEN DER PHYSIK, 2023, 535 (08)
  • [37] Non-Hermitian Anharmonicity Induces Single-Photon Emission
    Ben-Asher, Anael
    Fernandez-Dominguez, Antonio I.
    Feist, Johannes
    PHYSICAL REVIEW LETTERS, 2023, 130 (24)
  • [38] Robust quantum repeater with atomic ensembles and single-photon sources
    Hong, Fang-Yu
    Xiong, Shi-Jie
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [39] Single-photon scattering in an optomechanical Jaynes-Cummings model
    Ng, K. H.
    Law, C. K.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [40] Telecom-Wavelength Single-Photon Emitters in Multilayer InSe
    Zhao, Huan
    Hus, Saban M.
    Chen, Jinli
    Yan, Xiaodong
    Lawrie, Benjamin J.
    Jesse, Stephen
    Li, An-Ping
    Liang, Liangbo
    Htoon, Han
    ACS NANO, 2025, 19 (07) : 6911 - 6917