Polarimetric measurements of single-photon geometric phases

被引:3
|
作者
Ortiz, O. [1 ]
Yugra, Y. [1 ]
Rosario, A. [1 ]
Sihuincha, J. C. [1 ]
Loredo, J. C. [2 ,3 ]
Andres, M. V. [4 ]
De Zela, F. [1 ]
机构
[1] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru
[2] Univ Queensland, Ctr Quantum Comp & Commun Technol, Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[4] Univ Valencia, Dept Fis Aplicada & Electromagnetismo, Valencia, Spain
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
关键词
PANCHARATNAM PHASE; SU(2) POLARIMETRY; QUANTUM; STATES; EVOLUTION; LIGHT;
D O I
10.1103/PhysRevA.89.012124
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report polarimetric measurements of geometric phases that are generated by evolving polarized photons along nongeodesic trajectories on the Poincare sphere. The core of our polarimetric array consists of seven wave plates that are traversed by a single-photon beam. With this array, any SU(2) transformation can be realized. By exploiting the gauge invariance of geometric phases under U(1) local transformations, we nullify the dynamical contribution to the total phase, thereby making the latter coincide with the geometric phase. We demonstrate our arrangement to be insensitive to various sources of noise entering it. This makes the single-beam, polarimetric array a promising, versatile tool for testing robustness of geometric phases against noise.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Proposal for automated transformations on single-photon multipath qudits
    Baldijao, R. D.
    Borges, G. F.
    Marques, B.
    Solis-Prosser, M. A.
    Neves, L.
    Padua, S.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [22] Electrically driven single-photon sources
    Lin, Yating
    Ye, Yongzheng
    Fang, Wei
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (07)
  • [23] Single-Photon Cooling in Microwave Magnetomechanics
    Zoepfl, D.
    Juan, M. L.
    Schneider, C. M. F.
    Kirchmair, G.
    PHYSICAL REVIEW LETTERS, 2020, 125 (02)
  • [24] Quantum Decoherence of Single-Photon Counters
    D'Auria, V.
    Lee, N.
    Amri, T.
    Fabre, C.
    Laurat, J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (05)
  • [25] Quantum holography with single-photon states
    Abramovic, Denis
    Demoli, Nazif
    Stipcevic, Mario
    Skenderovic, Hrvoje
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [26] Dynamic modulated single-photon routing
    Li, Hao-Zhen
    Zeng, Ran
    Hu, Miao
    Xu, Mengmeng
    Zhou, Xue-Fang
    Xia, Xiuwen
    Xu, Jing-Ping
    Yang, Ya-Ping
    CHINESE PHYSICS B, 2023, 32 (12)
  • [27] Passively stabilized single-photon interferometer
    Liu, Hai-Long
    Wang, Min-Jie
    Bao, Jia-Xin
    Liu, Chao
    Li, Ya
    Li, Shu-Jing
    Wang, Hai
    CHINESE PHYSICS B, 2022, 31 (11)
  • [28] Cooperative single-photon subradiant states
    Jen, H. H.
    Chang, M. -S.
    Chen, Y. -C.
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [29] Frequency comb single-photon interferometry
    Lee, Sun Kyung
    Han, Noh Soo
    Yoon, Tai Hyun
    Cho, Minhaeng
    COMMUNICATIONS PHYSICS, 2018, 1
  • [30] Single-photon nonlinearity at room temperature
    Zasedatelev, Anton V.
    Baranikov, Anton V.
    Sannikov, Denis
    Urbonas, Darius
    Scafirimuto, Fabio
    Shishkov, Vladislav Yu.
    Andrianov, Evgeny S.
    Lozovik, Yurii E.
    Scherf, Ullrich
    Stoferle, Thilo
    Mahrt, Rainer F.
    Lagoudakis, Pavlos G.
    NATURE, 2021, 597 (7877) : 493 - +