Quantum error correction on infinite-dimensional Hilbert spaces

被引:22
作者
Beny, Cedric [1 ,2 ,3 ]
Kempf, Achim [2 ,3 ,4 ,5 ]
Kribs, David W. [5 ,6 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[4] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
[5] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[6] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
CODES;
D O I
10.1063/1.3155783
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization of quantum error correction to infinite-dimensional Hilbert spaces. We find that, under relatively mild conditions, much of the structure known from systems in finite-dimensional Hilbert spaces carries straightforwardly over to infinite dimensions. We also find that, at least in principle, there exist qualitatively new classes of quantum error correcting codes that have no finite-dimensional counterparts. We begin with a shift of focus from states to algebras of observables. Standard subspace codes and subsystem codes are seen as the special case of algebras of observables given by finite-dimensional von Neumann factors of type I. The new classes of codes that arise in infinite dimensions are shown to be characterized by von Neumann algebras of types II and III, for which we give in-principle physical examples. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3155783]
引用
收藏
页数:24
相关论文
共 31 条
  • [11] Algebraic formulation of quantum error correction
    Beny, Cedric
    Kribs, David W.
    Pasieka, Aron
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 597 - 603
  • [12] Characterizing the structure of preserved information in quantum processes
    Blume-Kohout, Robin
    Ng, Hui Khoon
    Poulin, David
    Viola, Lorenza
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (03)
  • [13] Braunstein S. L., 2003, QUANTUM INFORM CONTI
  • [14] Quantum information with continuous variables
    Braunstein, SL
    van Loock, P
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 513 - 577
  • [15] Error correction for continuous quantum variables
    Braunstein, SL
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4084 - 4087
  • [16] Method to find quantum noiseless subsystems
    Choi, MD
    Kribs, DW
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (05)
  • [17] DISCRETE HEISENBERG-WEYL GROUP AND MODULAR GROUP
    FADDEEV, LD
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (03) : 249 - 254
  • [18] Encoding a qubit in an oscillator
    Gottesman, D
    Kitaev, A
    Preskill, J
    [J]. PHYSICAL REVIEW A, 2001, 64 (01): : 123101 - 1231021
  • [19] Class of quantum error-correcting codes saturating the quantum Hamming hound
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 1996, 54 (03): : 1862 - 1868
  • [20] Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction
    Holbrook, John A.
    Kribs, David W.
    Laflamme, Raymond
    [J]. QUANTUM INFORMATION PROCESSING, 2003, 2 (05) : 381 - 419