Pentavalent symmetric graphs admitting vertex-transitive non-abelian simple groups

被引:24
作者
Du, Jia-Li [1 ]
Feng, Yan-Quan [1 ]
Zhou, Jin-Xin [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
FINITE SIMPLE-GROUPS; CAYLEY-GRAPHS; AUTOMORPHISM-GROUPS; VALENCY; ORDER;
D O I
10.1016/j.ejc.2017.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph Gamma is said to be symmetric if its automorphism group Aut(Gamma) is transitive on the arc set of Gamma. Let G be a finite non-abelian simple group and let Gamma be a connected pentavalent symmetric graph with G <= Aut(Gamma). In this paper, we show that if G is transitive on the vertex set of Gamma, then either G a Aut(Gamma) or Aut(Gamma) contains a nonabelian simple normal subgroup T such that G <= T and (G, T) is one of 58 possible pairs of non-abelian simple groups. In particular, if G is transitive on the arc set of Gamma, then (G, T) is one of 17 possible pairs, and if G is regular on the vertex set of Gamma, then (G, T) is one of 13 possible pairs, which improves the result on pentavalent symmetric Cayley graph given by Fang, et al. (2011). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 145
页数:12
相关论文
共 50 条
[41]   NOWHERE-ZERO $3$ -FLOWS IN TWO FAMILIES OF VERTEX-TRANSITIVE GRAPHS [J].
Zhang, Junyang ;
Tao, Ying .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (03) :353-360
[42]   Super s-restricted edge-connectivity of vertex-transitive graphs [J].
Sun WuYang ;
Zhang HePing .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) :1883-1890
[43]   THE TWO-ARC-TRANSITIVE GRAPHS OF SQUARE-FREE ORDER ADMITTING ALTERNATING OR SYMMETRIC GROUPS [J].
Wang, Gai Xia ;
Lu, Zai Ping .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (01) :127-144
[44]   Vertex-Transitive Graphs of Prime-Squared Order Are Hamilton-Decomposable [J].
Alspach, Brian ;
Bryant, Darryn ;
Kreher, Donald L. .
JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (01) :12-25
[45]   Nowhere-zero 3-flows in nilpotently vertex-transitive graphs [J].
Zhang, Junyang ;
Zhou, Sanming .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (01) :225-239
[46]   Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs [J].
Potocnik, Primoz ;
Spiga, Pablo ;
Verret, Gabriel .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 111 :148-180
[47]   Arc-transitive Cayley Graphs of Valency Five on Abelian Groups [J].
Alaeiyan, Mehdi ;
Talebi, Ali A. ;
Paryab, Khalil .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (06) :1029-1035
[49]   Cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular p-group [J].
Zhou, Jin-Xin ;
Feng, Yan-Quan .
ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03)
[50]   The locally 2-arc transitive graphs admitting an almost simple group of Suzuki type [J].
Swartz, Eric .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (05) :949-976