Second-order cone programming formulations for robust multiclass classification

被引:28
|
作者
Zhong, Ping [1 ]
Fukushima, Masao
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
D O I
10.1162/neco.2007.19.1.258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiclass classification is an important and ongoing research subject in machine learning. Current support vector methods for multiclass classification implicitly assume that the parameters in the optimization problems are known exactly. However, in practice, the parameters have perturbations since they are estimated from the training data, which are usually subject to measurement noise. In this article, we propose linear and nonlinear robust formulations for multiclass classification based on the M-SVM method. The preliminary numerical experiments confirm the robustness of the proposed method.
引用
收藏
页码:258 / 282
页数:25
相关论文
共 50 条
  • [1] Alternative second-order cone programming formulations for support vector classification
    Maldonado, Sebastian
    Lopez, Julio
    INFORMATION SCIENCES, 2014, 268 : 328 - 341
  • [2] Robust feature selection for multiclass Support Vector Machines using second-order cone programming
    Lopez, Julio
    Maldonado, Sebastian
    INTELLIGENT DATA ANALYSIS, 2015, 19 : S117 - S133
  • [3] Robust kernel-based multiclass support vector machines via second-order cone programming
    Maldonado, Sebastian
    Lopez, Julio
    APPLIED INTELLIGENCE, 2017, 46 (04) : 983 - 992
  • [4] Robust kernel-based multiclass support vector machines via second-order cone programming
    Sebastián Maldonado
    Julio López
    Applied Intelligence, 2017, 46 : 983 - 992
  • [5] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [6] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [7] Second-order cone programming formulations for a class of problems in structural optimization
    Athanasios Makrodimopoulos
    Atul Bhaskar
    Andy J. Keane
    Structural and Multidisciplinary Optimization, 2010, 40 : 365 - 380
  • [8] Robust array interpolation using second-order cone programming
    Pesavento, M
    Gershman, AB
    Luo, ZQ
    IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (01) : 8 - 11
  • [9] Second-order cone programming formulations for a class of problems in structural optimization
    Makrodimopoulos, Athanasios
    Bhaskar, Atul
    Keane, Andy J.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 365 - 380
  • [10] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Mathematical Programming, 2020, 180 : 75 - 116