Representing Sets with Sums of Triangular Numbers

被引:6
作者
Kane, Benjamin [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Math, NL-6525 AJ Nijmegen, Netherlands
关键词
MODULAR-FORMS; INTEGERS; GENERA;
D O I
10.1093/imrn/rnp053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate here sums of triangular numbers f(x) := Sigma(i)b(i)T(xi) where T-n is the nth triangular number. We show that for a set of positive integers S, there is a finite subset S-0 such that f represents S if and only if f represents S-0. However, computationally determining S-0 is ineffective for many choices of S. We give an explicit and efficient algorithm to determine the set S-0 under certain generalized Riemann hypotheses, and implement the algorithm to determine S-0 when S is the set of all odd integers.
引用
收藏
页码:3264 / 3285
页数:22
相关论文
共 23 条
[1]  
BENHAM JW, 1990, J LOND MATH SOC, V42, P1
[2]  
Bhargava M., 1999, Contemp. Math., V272, P27
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
BOSMA W, TRIANGULAR THE UNPUB
[5]  
Davenport H, 1980, Multiplicative number theory, V2nd
[6]  
Deligne P., 1974, PUBL MATH-PARIS, V43, P273, DOI 10.1007/BF02684373
[7]   HYPERBOLIC DISTRIBUTION PROBLEMS AND HALF-INTEGRAL WEIGHT MAASS FORMS [J].
DUKE, W .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :73-90
[8]   REPRESENTATION OF INTEGERS BY POSITIVE TERNARY QUADRATIC-FORMS AND EQUIDISTRIBUTION OF LATTICE POINTS ON ELLIPSOIDS [J].
DUKE, W ;
SCHULZEPILLOT, R .
INVENTIONES MATHEMATICAE, 1990, 99 (01) :49-57
[9]   PRIMITIVE REPRESENTATIONS BY SPINOR GENERA OF TERNARY QUADRATIC-FORMS [J].
EARNEST, AG ;
HSIA, JS ;
HUNG, DC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :222-230
[10]  
Hanke J, 2004, CRM PROC & LECT NOTE, V36, P147