Neumann eigenvalue problems on the exterior domains

被引:1
作者
Anoop, T., V [1 ]
Biswas, Nirjan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Neumann eigenvalue problem; p-Laplacian; Exterior domain; Principal eigenvalue; Embeddings of W-1; W-p; (Omega); PRINCIPAL EIGENVALUES; INEQUALITY;
D O I
10.1016/j.na.2019.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p is an element of(1, infinity), we consider the following weighted Neumann eigenvalue problem on B-1(c), the exterior of the closed unit ball in R-N: -Delta(p)phi = lambda(g)vertical bar phi vertical bar(p-2)phi in B-1(c), partial derivative phi/partial derivative nu = 0 on partial derivative B-1, where Delta(p) is the p-Laplace operator and g is an element of L-loc(1) (B-1(c)) is an indefinite weight function. Depending on the values of p and the dimension N, we take g in certain Lorentz spaces or weighted Lebesgue spaces and show that (0.1) admits an unbounded sequence of positive eigenvalues that includes a unique principal eigenvalue. For this purpose, we establish the compact embeddings of W-1,W-p (B-1(c)) into L-p (B-1(c), vertical bar g vertical bar) for g in certain weighted Lebesgue spaces. For N > p, we also provide an alternate proof for the embedding of W-1,W-p (B-1(c)) into the Lorentz space L-p*(,p) (B-1(c)). Further, we show that the set of all eigenvalues of (0.1) is closed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 27 条
[11]   ON THE EXISTENCE OF POSITIVE EIGENFUNCTIONS FOR AN EIGENVALUE PROBLEM WITH INDEFINITE WEIGHT FUNCTION [J].
BROWN, KJ ;
LIN, SS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (01) :112-120
[12]  
Demengel F, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4471-2807-6
[13]  
Drabek P., 2013, Birkhauser Advanced Texts Basler Lehrbucher
[14]  
Edmunds D. E., 2004, Springer Monographs in Mathematics
[15]  
FOLLAND GB, 1999, PURE APPL MATH
[16]  
Huang Y., 1995, COMMENT MATH U CAROL, V36, P519
[17]   ON EIGENVALUE PROBLEMS OF THE P-LAPLACIAN WITH NEUMANN BOUNDARY-CONDITIONS [J].
HUANG, YX .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :177-184
[18]  
Kawohl B., 2007, ADV DIFFERENTIAL EQU, V12, P407
[19]  
Kufner Alois, 2007, THE HARDY INEQUALITY, P162
[20]   Eigenvalue problems for the p-Laplacian [J].
Lê, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :1057-1099