Neumann eigenvalue problems on the exterior domains

被引:1
作者
Anoop, T., V [1 ]
Biswas, Nirjan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Neumann eigenvalue problem; p-Laplacian; Exterior domain; Principal eigenvalue; Embeddings of W-1; W-p; (Omega); PRINCIPAL EIGENVALUES; INEQUALITY;
D O I
10.1016/j.na.2019.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p is an element of(1, infinity), we consider the following weighted Neumann eigenvalue problem on B-1(c), the exterior of the closed unit ball in R-N: -Delta(p)phi = lambda(g)vertical bar phi vertical bar(p-2)phi in B-1(c), partial derivative phi/partial derivative nu = 0 on partial derivative B-1, where Delta(p) is the p-Laplace operator and g is an element of L-loc(1) (B-1(c)) is an indefinite weight function. Depending on the values of p and the dimension N, we take g in certain Lorentz spaces or weighted Lebesgue spaces and show that (0.1) admits an unbounded sequence of positive eigenvalues that includes a unique principal eigenvalue. For this purpose, we establish the compact embeddings of W-1,W-p (B-1(c)) into L-p (B-1(c), vertical bar g vertical bar) for g in certain weighted Lebesgue spaces. For N > p, we also provide an alternate proof for the embedding of W-1,W-p (B-1(c)) into the Lorentz space L-p*(,p) (B-1(c)). Further, we show that the set of all eigenvalues of (0.1) is closed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 27 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[3]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[4]  
Allegretto Walter, 1995, FUNKC EKVACIOJ-SER I, V38, P233
[5]  
[Anonymous], 1952, Inequalities, Cambridge Mathematical Library
[6]   Weighted quasilinear eigenvalue problems in exterior domains [J].
Anoop, T. V. ;
Drabek, Pavel ;
Sasi, Sarath .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :961-975
[7]   Eigenvalue problems with weights in Lorentz spaces [J].
Anoop, T. V. ;
Lucia, Marcello ;
Ramaswamy, Mythily .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) :355-376
[8]  
Anoop T. V., 2011, ELECT J DIFFERENTIAL, P22
[9]  
Brezis H., 2011, Functional Analysis, SOBOLEV SPACES AND PARTIAL DIFFERENTIAL EQUATIONS, DOI DOI 10.1007/978-0-387-70914-7
[10]   PRINCIPAL EIGENVALUES FOR PROBLEMS WITH INDEFINITE WEIGHT FUNCTION ON RN [J].
BROWN, KJ ;
COSNER, C ;
FLECKINGER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :147-155