Galerkin finite element method for nonlinear fractional differential equations

被引:6
作者
Nedaiasl, Khadijeh [1 ]
Dehbozorgi, Raziyeh [2 ]
机构
[1] Inst Adv Studies Basic Sci, Zanjan, Iran
[2] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
Fractional differential operators; Caputo derivative; Riemann-Liouville derivative; Variational formulation; Nonlinear operators; Galerkin method; NUMERICAL-SOLUTION;
D O I
10.1007/s11075-020-01032-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence, regularity, and approximation of the solution for a class of nonlinear fractional differential equations. In order to do this, suitable variational formulations are defined for nonlinear boundary value problems with Riemann-Liouville and Caputo fractional derivatives together with the homogeneous Dirichlet condition. We investigate the well-posedness and also the regularity of the corresponding weak solutions. Then, we develop a Galerkin finite element approach for the numerical approximation of the weak formulations and drive a priori error estimates and prove the stability of the schemes. Finally, some numerical experiments are provided to demonstrate the accuracy of the proposed method.
引用
收藏
页码:113 / 141
页数:29
相关论文
共 50 条
  • [41] A NEW SOLUTION METHOD FOR NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Alkan, Sertan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (06): : 1065 - 1077
  • [42] The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law
    Li, Changpin
    Wang, Zhen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 169 : 51 - 73
  • [43] A Lumped Galerkin finite element method for the generalized Hirota-Satsuma coupled KdV and coupled MKdV equations
    Yagmurlu, Nuri Murat
    Karaagac, Berat
    Esen, Alaattin
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) : 159 - 173
  • [44] Finite element methods for fractional diffusion equations
    Zhao, Yue
    Shen, Chen
    Qu, Min
    Bu, Weiping
    Tang, Yifa
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (04)
  • [45] Local discontinuous Galerkin methods for fractional ordinary differential equations
    Deng, Weihua
    Hesthaven, Jan S.
    BIT NUMERICAL MATHEMATICS, 2015, 55 (04) : 967 - 985
  • [46] Modified Galerkin algorithm for solving multitype fractional differential equations
    Alsuyuti, Muhammad M.
    Doha, Eid H.
    Ezz-Eldien, Samer S.
    Bayoumi, Bayoumi I.
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1389 - 1412
  • [47] A Simple Numerical Solution Procedure for Equations of Nonlinear Finite Element Method
    Cai, Songbai
    Li, Dazhi
    Kim, Changwan
    Shen, Pusheng
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES IV, PTS 1 AND 2, 2014, 889-890 : 187 - +
  • [48] Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations
    Vinogradova, Polina
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (03) : 339 - 365
  • [49] ERROR ESTIMATES FOR A SEMIDISCRETE FINITE ELEMENT METHOD FOR FRACTIONAL ORDER PARABOLIC EQUATIONS
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 445 - 466
  • [50] A shifted Chebyshev operational matrix method for pantograph-type nonlinear fractional differential equations
    Yang, Changqing
    Lv, Xiaoguang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 1781 - 1793