Distributed quantum phase estimation with entangled photons

被引:102
作者
Liu, Li-Zheng [1 ,2 ,3 ,4 ]
Zhang, Yu-Zhe [1 ,2 ,3 ,4 ]
Li, Zheng-Da [1 ,2 ,3 ,4 ]
Zhang, Rui [1 ,2 ,3 ,4 ]
Yin, Xu-Fei [1 ,2 ,3 ,4 ]
Fei, Yue-Yang [1 ,2 ,3 ,4 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Xu, Feihu [1 ,2 ,3 ,4 ]
Chen, Yu-Ao [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai, Peoples R China
基金
上海市科技启明星计划; 中国国家自然科学基金;
关键词
LIMIT;
D O I
10.1038/s41566-020-00718-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Distributed quantum metrology can enhance the sensitivity for sensing spatially distributed parameters beyond the classical limits. Here we demonstrate distributed quantum phase estimation with discrete variables to achieve Heisenberg limit phase measurements. Based on parallel entanglement in modes and particles, we demonstrate distributed quantum sensing for both individual phase shifts and an averaged phase shift, with an error reduction up to 1.4 dB and 2.7 dB below the shot-noise limit. Furthermore, we demonstrate a combined strategy with parallel mode entanglement and multiple passes of the phase shifter in each mode. In particular, our experiment uses six entangled photons with each photon passing the phase shifter up to six times, and achieves a total number of photon passes N = 21 at an error reduction up to 4.7 dB below the shot-noise limit. Our research provides a faithful verification of the benefit of entanglement and coherence for distributed quantum sensing in general quantum networks.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 34 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
[2]   Multicolor Quantum Metrology with Entangled Photons [J].
Bell, Bryn ;
Kannan, Srikanth ;
McMillan, Alex ;
Clark, Alex S. ;
Wadsworth, William J. ;
Rarity, John G. .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[3]  
Berni AA, 2015, NAT PHOTONICS, V9, P577, DOI [10.1038/NPHOTON.2015.139, 10.1038/nphoton.2015.139]
[4]   Quantum-enhanced measurements without entanglement [J].
Braun, Daniel ;
Adesso, Gerardo ;
Benatti, Fabio ;
Floreanini, Roberto ;
Marzolino, Ugo ;
Mitchell, Morgan W. ;
Pirandola, Stefano .
REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
[5]   Robust computation of aggregates in wireless sensor networks: Distributed randomized algorithms and analysis [J].
School of Electrical and Computer Engineering, Purdue University, Box 165, West Lafayette, IN 47907, United States ;
不详 .
IEEE Trans Parallel Distrib Syst, 2006, 9 (987-1000) :987-1000
[6]   Experimental optical phase measurement approaching the exact Heisenberg limit [J].
Daryanoosh, Shakib ;
Slussarenko, Sergei ;
Berry, Dominic W. ;
Wiseman, Howard M. ;
Pryde, Geoff J. .
NATURE COMMUNICATIONS, 2018, 9
[7]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[8]   Geographic gossip: Efficient averaging for sensor networks [J].
Dimakis, Alexandros D. G. ;
Sarwate, Anand D. ;
Wainwright, Martin J. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) :1205-1216
[9]   Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state [J].
Gao, Wei-Bo ;
Lu, Chao-Yang ;
Yao, Xing-Can ;
Xu, Ping ;
Guehne, Otfried ;
Goebel, Alexander ;
Chen, Yu-Ao ;
Peng, Cheng-Zhi ;
Chen, Zeng-Bing ;
Pan, Jian-Wei .
NATURE PHYSICS, 2010, 6 (05) :331-335
[10]   Distributed Quantum Metrology with Linear Networks and Separable Inputs [J].
Ge, Wenchao ;
Jacobs, Kurt ;
Eldredge, Zachary ;
Gorshkov, Alexey, V ;
Foss-Feig, Michael .
PHYSICAL REVIEW LETTERS, 2018, 121 (04)