Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries

被引:200
作者
Du, Fei [1 ,2 ]
Tang, Huan [1 ,2 ]
Pan, Limei [1 ,2 ]
Zhang, Tian [1 ,2 ]
Lu, Hanmei [1 ,2 ]
Xiong, Jie [1 ,2 ]
Yang, Jian [1 ,2 ]
Zhang, Chuanfang [3 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct, Nanjing 210009, Jiangsu, Peoples R China
[3] Trinity Coll Dublin, Sch Chem, CRANN, Dublin 2, Ireland
关键词
Two dimensional materials; Ti3CNTx MXene; Delamination; Freeze-drying; Lithium-ion batteries; Intercalation; ANODE MATERIAL; NIOBIUM PENTOXIDE; RATE PERFORMANCE; CARBIDE MXENE; TI3C2; MXENE; INTERCALATION; GRAPHENE; CAPACITY; ENERGY; ELECTRODE;
D O I
10.1016/j.electacta.2017.03.153
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing powerful Li-ion batteries require advanced nanostructured electrodes. Transition metal carbides or nitrides, known as MXenes, are an emerging family of two-dimensional materials. However, the lacking of an environmental-friendly preparation of colloidal MXene with few nanosheets-restacking greatly limits their usage in batteries and compromises the electrochemical performances. Here, we obtained the aqueous titanium carbonitride (Ti3CNTx) colloidal solution in the absence of hydrofluoric acid or organic solvents' intercalation processes. We further suppressed the notorious nanosheets restacking issue through a freeze-drying strategy of the colloidal dispersion. The resulted Ti3CNTx powder, with a "fluffy" morphology and quite few percentage of restacked nanosheets, displays good charge storage capacities, high rate handling and excellent cycling performance, for example, a discharge capacity of 300 mAh g (1) at 0.5 Ag (1) after 1000 cycles has been achieved. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:690 / 699
页数:10
相关论文
共 66 条
[11]   Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors [J].
Fan, Lei ;
Yang, Li ;
Ni, Xiangying ;
Han, Jie ;
Guo, Rong ;
Zhang, Chuanfang .
CARBON, 2016, 107 :629-637
[12]   Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C [J].
Gan, Li-Yong ;
Huang, Dan ;
Schwingenschloegl, Udo .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (43) :13672-13678
[13]   Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity [J].
Gao, Yupeng ;
Wang, Libo ;
Zhou, Aiguo ;
Li, Zhengyang ;
Chen, Jingkuo ;
Bala, Hari ;
Hu, Qianku ;
Cao, Xinxin .
MATERIALS LETTERS, 2015, 150 :62-64
[14]   Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance [J].
Ghidiu, Michael ;
Lukatskaya, Maria R. ;
Zhao, Meng-Qiang ;
Gogotsi, Yury ;
Barsoum, Michel W. .
NATURE, 2014, 516 (7529) :78-U171
[15]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[16]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[17]   A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes [J].
Higgins, Thomas M. ;
Park, Sang-Hoon ;
King, Paul J. ;
Zhang, Chuanfan ;
MoEvoy, Niall ;
Berner, Nina C. ;
Daly, Dermot ;
Shmeliov, Aleksey ;
Khan, Umar ;
Duesberg, Georg ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
ACS NANO, 2016, 10 (03) :3702-3713
[18]   Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability [J].
Hu, Zhimi ;
Xiao, Xu ;
Chen, Chi ;
Li, Tianqi ;
Huang, Liang ;
Zhang, Chuanfang ;
Su, Jun ;
Miao, Ling ;
Jiang, Jianjun ;
Zhang, Yanrong ;
Zhou, Jun .
NANO ENERGY, 2015, 11 :226-234
[19]   Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability [J].
Huang, Yanshan ;
Wu, Dongqing ;
Jiang, Jianzhong ;
Mai, Yiyong ;
Zhang, Fan ;
Pan, Hao ;
Feng, Xinliang .
NANO ENERGY, 2015, 12 :287-295
[20]  
Jahel A., 2014, ADV ENERGY MATER, V4, P7963