Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature

被引:198
作者
Chang, Yoosup [1 ]
Park, Hyejin [1 ]
Yang, Hyun-Jin [2 ]
Lee, Seungju [1 ]
Lee, Kwee-Yum [2 ,3 ]
Kim, Tae Soon [2 ,4 ]
Jung, Jongsun [5 ]
Shin, Jae-Min [1 ]
机构
[1] Syntekabio Inc, Yongin Silico Med Res Ctr, 283 Dongbaekjungang Ro,C508, Yongin 17006, Gyeonggi Do, South Korea
[2] Syntekabio Inc, Gwanghwamun Med Study Ctr, 92 Saemunan Ro,1708, Seoul 03186, South Korea
[3] Univ Queensland, Fac Med, Brisbane, Qld 4072, Australia
[4] Seoul Natl Univ, Coll Med, Dept Clin Med Sci, 71 Ihwajang Gil, Seoul 03087, South Korea
[5] Syntekabio Inc, Genome Data Integrat Ctr, 187 Techno 2 Ro,B512, Daejeon 34025, South Korea
关键词
ACUTE MYELOID-LEUKEMIA; ANTICANCER DRUGS; IN-VITRO; CELLS; PRAVASTATIN; SENSITIVITY; BELINOSTAT; PATIENT; CYTARABINE; IDARUBICIN;
D O I
10.1038/s41598-018-27214-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the era of precision medicine, cancer therapy can be tailored to an individual patient based on the genomic profile of a tumour. Despite the ever-increasing abundance of cancer genomic data, linking mutation profiles to drug efficacy remains a challenge. Herein, we report Cancer Drug Response profile scan (CDRscan) a novel deep learning model that predicts anticancer drug responsiveness based on a large-scale drug screening assay data encompassing genomic profiles of 787 human cancer cell lines and structural profiles of 244 drugs. CDRscan employs a two-step convolution architecture, where the genomic mutational fingerprints of cell lines and the molecular fingerprints of drugs are processed individually, then merged by 'virtual docking', an in silico modelling of drug treatment. Analysis of the goodness-of-fit between observed and predicted drug response revealed a high prediction accuracy of CDRscan (R-2 > 0.84; AUROC > 0.98). We applied CDRscan to 1,487 approved drugs and identified 14 oncology and 23 non-oncology drugs having new potential cancer indications. This, to our knowledge, is the first-time application of a deep learning model in predicting the feasibility of drug repurposing. By further clinical validation, CDRscan is expected to allow selection of the most effective anticancer drugs for the genomic profile of the individual patient.
引用
收藏
页数:11
相关论文
共 72 条
[1]   Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution [J].
Abbosh, Christopher ;
Birkbak, Nicolai J. ;
Wilson, Gareth A. ;
Jamal-Hanjani, Mariam ;
Constantin, Tudor ;
Salari, Raheleh ;
Le Quesne, John ;
Moore, David A. ;
Veeriah, Selvaraju ;
Rosenthal, Rachel ;
Marafioti, Teresa ;
Kirkizlar, Eser ;
Watkins, Thomas B. K. ;
McGranahan, Nicholas ;
Ward, Sophia ;
Martinson, Luke ;
Riley, Joan ;
Fraioli, Francesco ;
Al Bakir, Maise ;
Gronroos, Eva ;
Zambrana, Francisco ;
Endozo, Raymondo ;
Bi, Wenya Linda ;
Fennessy, Fiona M. ;
Sponer, Nicole ;
Johnson, Diana ;
Laycock, Joanne ;
Shafi, Seema ;
Czyzewska-Khan, Justyna ;
Rowan, Andrew ;
Chambers, Tim ;
Matthews, Nik ;
Turajlic, Samra ;
Hiley, Crispin ;
Lee, Siow Ming ;
Forster, Martin D. ;
Ahmad, Tanya ;
Falzon, Mary ;
Borg, Elaine ;
Lawrence, David ;
Hayward, Martin ;
Kolvekar, Shyam ;
Panagiotopoulos, Nikolaos ;
Janes, Sam M. ;
Thakrar, Ricky ;
Ahmed, Asia ;
Blackhall, Fiona ;
Summers, Yvonne ;
Hafez, Dina ;
Naik, Ashwini .
NATURE, 2017, 545 (7655) :446-+
[2]   Efficacy of Intermittent Combined RAF and MEK Inhibition in a Patient with Concurrent BRAF- and NRAS-Mutant Malignancies [J].
Abdel-Wahab, Omar ;
Klimek, Virginia M. ;
Gaskell, Alisa A. ;
Viale, Agnes ;
Cheng, Donavan ;
Kim, Eunhee ;
Rampal, Raajit ;
Bluth, Mark ;
Harding, James J. ;
Callahan, Margaret K. ;
Merghoub, Taha ;
Berger, Michael F. ;
Solit, David B. ;
Rosen, Neal ;
Levine, Ross L. ;
Chapman, Paul B. .
CANCER DISCOVERY, 2014, 4 (05) :538-545
[3]   SWOG0919: a Phase 2 study of idarubicin and cytarabine in combination with pravastatin for relapsed acute myeloid leukaemia [J].
Advani, Anjali S. ;
McDonough, Shannon ;
Copelan, Edward ;
Willman, Cheryl ;
Mulford, Deborah A. ;
List, Alan F. ;
Sekeres, Mikkael A. ;
Othus, Megan ;
Appelbaum, Frederick R. .
BRITISH JOURNAL OF HAEMATOLOGY, 2014, 167 (02) :233-237
[4]   Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models [J].
Alexander, D. L. J. ;
Tropsha, A. ;
Winkler, David A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (07) :1316-1322
[5]   Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data [J].
Aliper, Alexander ;
Plis, Sergey ;
Artemov, Artem ;
Ulloa, Alvaro ;
Mamoshina, Polina ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2016, 13 (07) :2524-2530
[6]  
[Anonymous], 2017, FDA Approves First Cancer Treatment for Any Solid Tumor with a Specific Genetic Feature
[7]  
[Anonymous], DEEP LEARN REPR LEAR
[8]   Examining the utility of patient-derived xenograft mouse models [J].
Aparicio, Samuel ;
Hidalgo, Manuel ;
Kung, Andrew L. .
NATURE REVIEWS CANCER, 2015, 15 (05) :311-316
[9]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[10]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607