Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs

被引:16
作者
Goberna, M. A. [1 ]
Jeyakumar, V. [2 ]
Li, G. [2 ]
Vicente-Perez, J. [3 ]
机构
[1] Univ Alicante, Dept Matemat, Alicante 03071, Spain
[2] Univ New South Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[3] Univ Alicante, Dept Fundamentos Anal Econ, Alicante 03071, Spain
基金
澳大利亚研究理事会;
关键词
Robustness and sensitivity analysis; Multi-objective optimization; Convex optimization; Robust optimization; Robust efficient solutions; LINEAR-PROGRAMS; INEQUALITY SYSTEMS; ILL-POSEDNESS; OPTIMIZATION; FEASIBILITY; DISTANCE; RADIUS;
D O I
10.1016/j.ejor.2018.03.018
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with uncertain multi-objective convex programming problems, where the data of the objective function or the constraints or both are allowed to be uncertain within specified uncertainty sets. We present sufficient conditions for the existence of highly robust weakly efficient solutions, that is, robust feasible solutions which are weakly efficient for any possible instance of the objective function within a specified uncertainty set. This is done by way of estimating the radius of highly robust weak efficiency under linearly distributed uncertainty of the objective functions. In the particular case of robust quadratic multi-objective programs, we show that these sufficient conditions can be expressed in terms of the original data of the problem, extending and improving the corresponding results in the literature for robust multi-objective linear programs under ball uncertainty. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 50
页数:11
相关论文
共 31 条
[1]   STABILITY IN MATHEMATICAL-PROGRAMMING WITH NONDIFFERENTIABLE DATA [J].
AUSLENDER, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (02) :239-254
[2]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[3]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[4]   LINEAR MULTIPLE OBJECTIVE PROBLEMS WITH INTERVAL-COEFFICIENTS [J].
BITRAN, GR .
MANAGEMENT SCIENCE, 1980, 26 (07) :694-706
[5]  
Bot RI, 2009, VECTOR OPTIM, P1, DOI 10.1007/978-3-642-02886-1_1
[6]   Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases [J].
Canovas, M. J. ;
Lopez, M. A. ;
Parra, J. ;
Toledo, F. J. .
OPTIMIZATION, 2011, 60 (07) :925-946
[7]   Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems [J].
Cánovas, MJ ;
López, MA ;
Parra, J ;
Toledo, FJ .
MATHEMATICAL PROGRAMMING, 2005, 103 (01) :95-126
[8]   An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs [J].
Chuong, T. D. ;
Jeyakumar, V. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (01) :203-226
[10]  
Ehrgott M., 2014, EUR J OPER RES, V239, P7