Superconvergence of tricubic block finite elements

被引:2
|
作者
Liu JingHong [1 ]
Sun HaiNa [1 ]
Zhu QiDing [2 ]
机构
[1] Zhejiang Univ, Dept Fundamental Courses, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China
[2] Hunan Normal Univ, Sch Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 05期
基金
中国国家自然科学基金;
关键词
block finite element; interpolation operator of projection type; superconvergence; supercloseness; weak estimate; discrete derivative Green's function; POINTS;
D O I
10.1007/s11425-009-0039-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce interpolation operator of projection type in three dimensions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W-2,W-1-seminorm of the discrete derivative Green's function and the weak estimates, we show that the tricubic block finite element solution u(h) and the tricubic interpolant of projection type Pi(3)(h)u have superclose gradient in the pointwise sense of the L-infinity-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.
引用
收藏
页码:959 / 972
页数:14
相关论文
共 50 条