Crystal phase control in self-catalyzed InSb nanowires using basic growth parameter V/III ratio

被引:8
作者
Anandan, Deepak [1 ]
Nagarajan, Venkatesan [1 ]
Kakkerla, Ramesh Kumar [1 ]
Yu, Hung Wei [1 ]
Ko, Hua Lun [2 ]
Singh, Sankalp Kumar [1 ]
Lee, Ching Ting [4 ]
Chang, Edward Yi [1 ,2 ,3 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, 1001 Univ Rd, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Int Coll Semicond Technol, 1001 Univ Rd, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Dept Elect Engn, 1001 Univ Rd, Hsinchu 30010, Taiwan
[4] Yuan Ze Univ, Dept Photon Engn, Taoyuan 320, Taiwan
关键词
Nanomaterials; Semiconducting III-V materials; MOCVD; Infrared devices; Crystal structure; Antimonides; SURFACE-ENERGY; CONTACT-ANGLE; GAAS; MECHANISMS; INTERFACE; INP;
D O I
10.1016/j.jcrysgro.2019.06.016
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this work, the influence of V/III ratio on self-catalyzed InSb nanowire (NW) crystal structure is investigated using metal organic chemical vapor deposition. The effective balance of V/III ratio determines the change of InSb NW crystal structure from zincblende to wurtzite. Particularly, as group-V molar flow varies from 6.4 x 10(-5) to 8.0 x 10(-5) mol/min, wurtzite segment length of InSb NW increases from 16 +/- 9 nm to 89 +/- 9 nm, whereas zincblende crystal phase is observed for other molar flows. We interpret the observed phase transition to a lower surface energy of In-Sb alloy droplet than pure In-droplet, which makes triple phase line nucleation energetically favorable. This study gives insight on single growth parameter (V/III ratio) change to the InSb NW crystal control, such a technique is essential to selectively tune the crystal phase of single NW for various applications.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 46 条
[1]   The Role of Surface Energies and Chemical Potential during Nanowire Growth [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Feiner, Lou-Fe ;
Immink, George G. W. ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NANO LETTERS, 2011, 11 (03) :1259-1264
[2]   Growth of foreign-catalyst-free vertical InAs/InSb heterostructure nanowires on Si (111) substrate by MOCVD [J].
Anandan, Deepak ;
Kakkerla, Ramesh Kumar ;
Yu, Hung Wei ;
Ko, Hua Lun ;
Nagarajan, Venkatesan ;
Singh, Sankalp Kumar ;
Lee, Ching Ting ;
Chang, Edward Yi .
JOURNAL OF CRYSTAL GROWTH, 2019, 506 :45-54
[3]   Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1-x Sb x nanowires [J].
Anyebe, E. A. ;
Rajpalke, M. K. ;
Veal, T. D. ;
Jin, C. J. ;
Wang, Z. M. ;
Zhuang, Q. D. .
NANO RESEARCH, 2015, 8 (04) :1309-1319
[4]   The metal-organic chemical vapor deposition and properties of III-V antimony-based semiconductor materials [J].
Biefeld, RM .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2002, 36 (04) :105-142
[5]   Synthesis and properties of antimonide nanowires [J].
Borg, B. Mattias ;
Wernersson, Lars-Erik .
NANOTECHNOLOGY, 2013, 24 (20)
[6]   High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy [J].
Caroff, Philippe ;
Wagner, Jakob B. ;
Dick, Kimberly A. ;
Nilsson, Henrik A. ;
Jeppsson, Mattias ;
Deppert, Knut ;
Samuelson, Lars ;
Wallenberg, L. Reine ;
Wernersson, Lars-Erik .
SMALL, 2008, 4 (07) :878-882
[7]   Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy [J].
Cirlin, G. E. ;
Dubrovskii, V. G. ;
Samsonenko, Yu. B. ;
Bouravleuv, A. D. ;
Durose, K. ;
Proskuryakov, Y. Y. ;
Mendes, Budhikar ;
Bowen, L. ;
Kaliteevski, M. A. ;
Abram, R. A. ;
Zeze, Dagou .
PHYSICAL REVIEW B, 2010, 82 (03)
[8]   Two Different Growth Mechanisms for Au-Free InAsSb Nanowires Growth on Si Substrate [J].
Du, Wenna ;
Yang, Xiaoguang ;
Pan, Huayong ;
Wang, Xiaoye ;
Ji, Haiming ;
Luo, Shuai ;
Ji, Xianghai ;
Wang, Zhanguo ;
Yang, Tao .
CRYSTAL GROWTH & DESIGN, 2015, 15 (05) :2413-2418
[9]   Development of Growth Theory for Vapor Liquid Solid Nanowires: Contact Angle, Truncated Facets, and Crystal Phase [J].
Dubrovskii, V. G. .
CRYSTAL GROWTH & DESIGN, 2017, 17 (05) :2544-2548
[10]   Growth kinetics and crystal structure of semiconductor nanowires [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Harmand, J. C. ;
Glas, F. .
PHYSICAL REVIEW B, 2008, 78 (23)