An immersed interface method for simulating the interaction of a fluid with moving boundaries

被引:283
|
作者
Xu, Sheng [1 ]
Wang, Z. Jane [1 ]
机构
[1] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
关键词
immersed interface method; immersed boundary method; Cartesian grid method; moving deformable boundaries; complex geometries; flow around multiple objects; singular force;
D O I
10.1016/j.jcp.2005.12.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the immersed interface method, boundaries are represented as singular force in the Navier-Stokes equations, which enters a numerical scheme as jump conditions. Recently, we systematically derived all the necessary spatial and temporal jump conditions for simulating incompressible viscous flows subject to moving boundaries in 3D with second-order spatial and temporal accuracy near the boundaries [Sheng Xu, Z. Jane Wang, Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation, SIAM J. Sci. Comput., 2006, in press]. In this paper we implement the immersed interface method to incorporate these jump conditions in a 2D numerical scheme. We study the accuracy, efficiency and robustness of our method by simulating Taylor-Couette flow, flow induced by a relaxing balloon, flow past single and multiple cylinders, and flow around a flapping wing. Our results show that: (1) our code has second-order accuracy in the infinity norm for both the velocity and the pressure; (2) the addition of an object introduces relatively insignificant computational cost; (3) the method is equally effective in computing flow subject to boundaries with prescribed force or boundaries with prescribed motion. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 493
页数:40
相关论文
共 50 条
  • [31] Constrained moving least-squares immersed boundary method for fluid-structure interaction analysis
    Qu, Yegao
    Batra, Romesh C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (12) : 675 - 692
  • [32] An immersed interface method for flow past circular cylinder in the vicinity of a plane moving wall
    Li, Zhong
    Jaiman, Rajeev K.
    Khoo, Boo Cheong
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 81 (10) : 611 - 639
  • [33] Simulating flows with moving rigid boundary using immersed-boundary method
    Liao, Chuan-Chieh
    Chang, Yu-Wei
    Lin, Chao-An
    McDonough, J. M.
    COMPUTERS & FLUIDS, 2010, 39 (01) : 152 - 167
  • [34] A simple and efficient direct forcing immersed boundary method combined with a high order compact scheme for simulating flows with moving rigid boundaries
    Gronskis, Alejandro
    Artana, Guillermo
    COMPUTERS & FLUIDS, 2016, 124 : 86 - 104
  • [35] An efficient immersed boundary projection method for flow over complex/moving boundaries
    Li, Ru-Yang
    Xie, Chun-Mei
    Huang, Wei-Xi
    Xu, Chun-Xiao
    COMPUTERS & FLUIDS, 2016, 140 : 122 - 135
  • [36] Numerical Simulation of the Formation of Vortices Around Rigid Cylinders as a Issue of Fluid-Structure Interaction Using Immersed Interface Method
    Alizadeh, As'ad
    Jebrail Zekri, Hussein
    Jafarmadar, Samad
    MECHANIKA, 2020, 26 (01): : 18 - 24
  • [37] A Hybrid Immersed Boundary-Lattice Boltzmann Method for Simulation of Viscoelastic Fluid Flows Interaction with Complex Boundaries
    Sedaghat, M. H.
    Bagheri, A. A. H.
    Shahmardan, M. M.
    Norouzi, M.
    Khoo, B. C.
    Jayathilake, P. G.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (05) : 1411 - 1445
  • [38] An immersed boundary method for fluid-structure interaction with compressible multiphase flows
    Wang, Li
    Currao, Gaetano M. D.
    Han, Feng
    Neely, Andrew J.
    Young, John
    Tian, Fang-Bao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 346 : 131 - 151
  • [39] A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
    Mittal, R.
    Dong, H.
    Bozkurttas, M.
    Najjar, F. M.
    Vargas, A.
    von Loebbecke, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) : 4825 - 4852
  • [40] A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations
    Hu, Wei-Fan
    Lai, Ming-Chih
    Young, Yuan-Nan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 47 - 61