Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics

被引:76
作者
Afzal, Asif [1 ]
Ramis, M. K. [1 ]
机构
[1] Visvesvaraya Technol Univ, PA Coll Engn, Dept Mech Engn, Belagavi 574153, Mangaluru, India
来源
JOURNAL OF ENERGY STORAGE | 2020年 / 32卷
关键词
Fuzzy logic; Particle swarm optimization; Genetic algorithm; Multi-objective optimization; Heat transfer; Battery system; LITHIUM-ION BATTERY; COMPUTATIONAL FLUID-DYNAMICS; HEAT DISSIPATION PERFORMANCE; MANAGEMENT-SYSTEM; SHAPE OPTIMIZATION; HYDRAULIC OPTIMIZATION; DESIGN OPTIMIZATION; EXCHANGER; FLOW; PACK;
D O I
10.1016/j.est.2020.101815
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel technique for multi-objective optimization of thermal management in battery system using hybrid Genetic algorithm and Fuzzy logic is developed. Secondly, Particle Swarm Optimization algorithm combined with Fuzzy logic is also proposed for the same. The combined algorithms and fitness function for fitness evaluation is written in-house C code. For the thermal performance fitness evaluation, realistic conjugate heat transfer condition at the battery and coolant interface is adopted. The objective functions are average Nusselt number, friction coefficient, and maximum temperature. Maximizing one causes proportional increase in another, hence to achieve a moderate condition of better Nusselt number with low pumping power cost and temperature within allowable limits, these algorithms assist in optimization. Five different independent operating parameters are selected for the Multi-objective optimization and brief results are presented. The Fuzzy logic membership functions adopted can be easily modified/selected by the user to suite the battery thermal problem at hand and to assign weight to each fitness function. The fitness function obtained using the proposed multi-objective optimization technique are closer and indicate safe temperature of battery with enhanced Nusselt number and minimum friction coefficient. The maximum multi-objective fitness obtained after normalization is 0.9.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-Objective Particle Swarm Optimization Based on Fuzzy Optimality
    Shen, Yongpeng
    Ge, Gaorui
    IEEE ACCESS, 2019, 7 : 101513 - 101526
  • [32] Virtual Photography Using Multi-Objective Particle Swarm Optimization
    Barry, William
    Ross, Brian J.
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 285 - 292
  • [33] Multi-Objective Path Optimization in Fog Architectures Using the Particle Swarm Optimization Approach
    Morkevicius, Nerijus
    Liutkevicius, Agnius
    Venckauskas, Algimantas
    SENSORS, 2023, 23 (06)
  • [34] Electrical Machine Winding Performance Optimization by Multi-Objective Particle Swarm Algorithm
    Martins, Francois S.
    Alvarenga, Bernardo P.
    Paula, Geyverson T.
    ENERGIES, 2024, 17 (10)
  • [35] Multi-Objective Particle Swarm Based Optimization of an Air Jet Impingement System
    Martinez-Filgueira, Pablo
    Zulueta, Ekaitz
    Sanchez-Chica, Ander
    Fernandez-Gamiz, Unai
    Soriano, Josu
    ENERGIES, 2019, 12 (09)
  • [36] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [37] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [38] A new multi-objective particle swarm optimization algorithm based on decomposition
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    INFORMATION SCIENCES, 2015, 325 : 541 - 557
  • [39] Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization
    Wang, Lingfeng
    Singh, Chanan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (03) : 226 - 234
  • [40] Convolutional neural networks optimization using multi-objective particle swarm optimization algorithm
    Rashno, Armin
    Fadaei, Sadegh
    INFORMATION SCIENCES, 2025, 689