Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics

被引:76
作者
Afzal, Asif [1 ]
Ramis, M. K. [1 ]
机构
[1] Visvesvaraya Technol Univ, PA Coll Engn, Dept Mech Engn, Belagavi 574153, Mangaluru, India
来源
JOURNAL OF ENERGY STORAGE | 2020年 / 32卷
关键词
Fuzzy logic; Particle swarm optimization; Genetic algorithm; Multi-objective optimization; Heat transfer; Battery system; LITHIUM-ION BATTERY; COMPUTATIONAL FLUID-DYNAMICS; HEAT DISSIPATION PERFORMANCE; MANAGEMENT-SYSTEM; SHAPE OPTIMIZATION; HYDRAULIC OPTIMIZATION; DESIGN OPTIMIZATION; EXCHANGER; FLOW; PACK;
D O I
10.1016/j.est.2020.101815
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A novel technique for multi-objective optimization of thermal management in battery system using hybrid Genetic algorithm and Fuzzy logic is developed. Secondly, Particle Swarm Optimization algorithm combined with Fuzzy logic is also proposed for the same. The combined algorithms and fitness function for fitness evaluation is written in-house C code. For the thermal performance fitness evaluation, realistic conjugate heat transfer condition at the battery and coolant interface is adopted. The objective functions are average Nusselt number, friction coefficient, and maximum temperature. Maximizing one causes proportional increase in another, hence to achieve a moderate condition of better Nusselt number with low pumping power cost and temperature within allowable limits, these algorithms assist in optimization. Five different independent operating parameters are selected for the Multi-objective optimization and brief results are presented. The Fuzzy logic membership functions adopted can be easily modified/selected by the user to suite the battery thermal problem at hand and to assign weight to each fitness function. The fitness function obtained using the proposed multi-objective optimization technique are closer and indicate safe temperature of battery with enhanced Nusselt number and minimum friction coefficient. The maximum multi-objective fitness obtained after normalization is 0.9.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multi-Objective Mean Particle Swarm Optimization Algorithm
    Pei, Shengyu
    Zhou, Yongquan
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3315 - 3319
  • [22] A multi-objective optimal power flow using particle swarm optimization
    Hazra, J.
    Sinha, A. K.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2011, 21 (01): : 1028 - 1045
  • [23] Multi-objective Optimization of Parallel Manipulators using a Particle Swarm Algorithm
    Lopes, Antonio M.
    Freire, Helio
    De Moura Oliveira, P. B.
    Solteiro Pires, E. J.
    Reis, Cecilia
    NEW ASPECTS OF APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS AND INFORMATICS AND COMMUNICATION, 2010, : 103 - +
  • [24] Multi-objective feasibility enhanced particle swarm optimization
    Hasanoglu, Mehmet Sinan
    Dolen, Melik
    ENGINEERING OPTIMIZATION, 2018, 50 (12) : 2013 - 2037
  • [25] Multi-objective optimization of marine nuclear power secondary circuit system based on improved multi-objective particle swarm optimization algorithm
    Zhao, Jiarui
    Li, Yanjun
    Bai, Jinfeng
    Ma, Lin
    Shi, Changwei
    Zhang, Guolei
    Shi, Jianxin
    PROGRESS IN NUCLEAR ENERGY, 2023, 161
  • [26] Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm
    Rao, R. V.
    Pawar, P. J.
    Shankar, R.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2008, 222 (08) : 949 - 958
  • [27] Multi-Objective Particle Swarm Optimization Algorithm Based on Game Strategies
    Li, Zhiyong
    Liu, Songbing
    Xiao, Degui
    Chen, Jun
    Li, Kenli
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 287 - 293
  • [28] Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm
    Duan, Chen
    Wang, Xinggang
    Shu, Shuiming
    Jing, Changwei
    Chang, Huawei
    ENERGY CONVERSION AND MANAGEMENT, 2014, 84 : 88 - 96
  • [29] Multi-objective Particle Swarm Optimization Algorithm Based on the Disturbance Operation
    Gao, Yuelin
    Qu, Min
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 591 - 600
  • [30] Multi-Objective Particle Swarm Optimization Algorithm Based on Differential Populations
    Qiao, Ying
    INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2012, 2012, 7390 : 510 - 517