Model Selection Criterion for Causal Parameters in Structural Mean Models Based on a Quasi-Likelihood
被引:10
|
作者:
Taguri, Masataka
论文数: 0引用数: 0
h-index: 0
机构:
Yokohama City Univ, Grad Sch Med, Dept Biostat & Epidemiol, Kanazawa Ku, Yokohama, Kanagawa 2360004, JapanYokohama City Univ, Grad Sch Med, Dept Biostat & Epidemiol, Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
Taguri, Masataka
[1
]
Matsuyama, Yutaka
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Med, Sch Publ Hlth, Dept Biostat,Bunkyo Ku, Tokyo 1130033, JapanYokohama City Univ, Grad Sch Med, Dept Biostat & Epidemiol, Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
Matsuyama, Yutaka
[2
]
Ohashi, Yasuo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Med, Sch Publ Hlth, Dept Biostat,Bunkyo Ku, Tokyo 1130033, JapanYokohama City Univ, Grad Sch Med, Dept Biostat & Epidemiol, Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
Ohashi, Yasuo
[2
]
机构:
[1] Yokohama City Univ, Grad Sch Med, Dept Biostat & Epidemiol, Kanazawa Ku, Yokohama, Kanagawa 2360004, Japan
[2] Univ Tokyo, Grad Sch Med, Sch Publ Hlth, Dept Biostat,Bunkyo Ku, Tokyo 1130033, Japan
Structural mean models (SMMs) have been proposed for estimating causal parameters in the presence of non-ignorable non-compliance in clinical trials. To obtain a valid causal estimate, we must impose several assumptions. One of these is the correct specification of the structural model. Building on Pan's work (2001, Biometrics57, 120-125) on developing a model selection criterion for generalized estimating equations, we propose a new approach for model selection of SMMs based on a quasi-likelihood. We provide a formal model selection criterion that is an extension of Akaike's information criterion. Using subset selection of baseline covariates, our method allows us to understand whether the treatment effect varies across the available baseline covariate levels, and/or to quantify the treatment effect on a specific covariates level to target specific individuals to maximize treatment benefit. We present simulation results in which our method performs reasonably well compared to other testing methods in terms of both the probability of selecting the correct model and the predictive performances of the individual treatment effects. We use a large randomized clinical trial of pravastatin as a motivation.
机构:
Ctr Dis Control & Prevent, Div Res & Methodol, Natl Ctr Hlth Stat, Hyattsville, MD USACtr Dis Control & Prevent, Div Res & Methodol, Natl Ctr Hlth Stat, Hyattsville, MD USA
Irimata, Katherine E.
Wilson, Jeffrey R.
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Dept Econ, Tempe, AZ 85287 USACtr Dis Control & Prevent, Div Res & Methodol, Natl Ctr Hlth Stat, Hyattsville, MD USA
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
Cui, Xiaohua
Chen, Xia
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
Chen, Xia
Yan, Li
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
机构:
Charles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Sokolovska 49-83, Prague 8, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Sokolovska 49-83, Prague 8, Czech Republic
Hudecova, Sarka
Pesta, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Sokolovska 49-83, Prague 8, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Sokolovska 49-83, Prague 8, Czech Republic
机构:
Georgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USAGeorgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USA
Yu, Lili
Yu, Ruifeng
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R ChinaGeorgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USA
Yu, Ruifeng
Liu, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Georgia, Dept Stat, Athens, GA 30602 USAGeorgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USA
Liu, Liang
Chen, Ding-Geng
论文数: 0引用数: 0
h-index: 0
机构:
Georgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USA
Univ Rochester, Sch Nursing, Rochester, NY USA
Univ Rochester, Dept Biostat & Computat Biol, Coll Med & Dent, Rochester, NY USAGeorgia So Univ, Jiann Ping Hsu Coll Publ Hlth, Statesboro, GA 30460 USA
机构:
Univ Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USA
Chen, Chixiang
Shen, Biyi
论文数: 0引用数: 0
h-index: 0
机构:
Regeneron Pharmaceut, Tarrytown, NY USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USA
Shen, Biyi
Wang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH USAUniv Maryland, Div Biostat & Bioinformat, Sch Med, College Pk, MD USA