The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy

被引:612
作者
Shi, Yang [1 ]
Van der Meel, Roy [2 ,3 ]
Chen, Xiaoyuan [4 ]
Lammers, Twan [1 ,5 ,6 ]
机构
[1] RWTH Aachen Univ Clin, Inst Expt Mol Imaging, Aachen, Germany
[2] Eindhoven Univ Technol, Lab Chem Biol, Dept Biomed Engn, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Inst Complex Mol Syst, Eindhoven, Netherlands
[4] NIH, Lab Mol Imaging & Nanomed, Natl Inst Biomed Imaging & Bioengn, Bldg 10, Bethesda, MD 20892 USA
[5] Univ Twente, Dept Targeted Therapeut, Enschede, Netherlands
[6] Univ Utrecht, Dept Pharmaceut, Utrecht, Netherlands
来源
THERANOSTICS | 2020年 / 10卷 / 17期
关键词
EPR effect; enhanced permeability and retention (EPR); cancer nanomedicine; tumor targeting; active targeting; cancer immunotherapy; extracellular vesicles; imaging; MACROMOLECULAR THERAPEUTICS; ENHANCED PERMEABILITY; PANCREATIC-CANCER; DRUG-DELIVERY; SOLID TUMORS; NANOPARTICLES; THERAPY; CHEMOTHERAPY; ULTRASOUND; RETENTION;
D O I
10.7150/thno.49577
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Following its discovery more than 30 years ago, the enhanced permeability and retention (EPR) effect has become the guiding principle for cancer nanomedicine development. Over the years, the tumor-targeted drug delivery field has made significant progress, as evidenced by the approval of several nanomedicinal anticancer drugs. Recently, however, the existence and the extent of the EPR effect - particularly in patients - have become the focus of intense debate. This is partially due to the disbalance between the huge number of preclinical cancer nanomedicine papers and relatively small number of cancer nanomedicine drug products reaching the market. To move the field forward, we have to improve our understanding of the EPR effect, of its cancer type-specific pathophysiology, of nanomedicine interactions with the heterogeneous tumor microenvironment, of nanomedicine behavior in the body, and of translational aspects that specifically complicate nanomedicinal drug development. In this virtual special issue, 24 research articles and reviews discussing different aspects of the EPR effect and cancer nanomedicine are collected, together providing a comprehensive and complete overview of the current state-of-the-art and future directions in tumor-targeted drug delivery.
引用
收藏
页码:7921 / 7924
页数:4
相关论文
共 42 条
[1]   Nanoparticles in the clinic: An update [J].
Anselmo, Aaron C. ;
Mitragotri, Samir .
BIOENGINEERING & TRANSLATIONAL MEDICINE, 2019, 4 (03)
[2]   EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles [J].
Bort, Guillaume ;
Lux, Francois ;
Dufort, Sandrine ;
Cremillieux, Yannick ;
Verry, Camille ;
Tillement, Olivier .
THERANOSTICS, 2020, 10 (03) :1319-1331
[3]   Monoclonal antibody-based molecular imaging strategies and theranostic opportunities [J].
Dammes, Niels ;
Peer, Dan .
THERANOSTICS, 2020, 10 (02) :938-955
[4]   Imaging-assisted anticancer nanotherapy [J].
Dasgupta, Anshuman ;
Biancacci, Ilaria ;
Kiessling, Fabian ;
Lammers, Twan .
THERANOSTICS, 2020, 10 (03) :956-967
[5]   Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging [J].
de Bruijn, Henriette S. ;
Mashayekhi, Vida ;
Schreurs, Tom J. L. ;
van Driel, Pieter B. A. A. ;
Strijkers, Gustav J. ;
van Diest, Paul J. ;
Lowik, Clemens W. G. M. ;
Seynhaeve, Ann L. B. ;
ten Hagen, Timo L. M. ;
Prompers, Jeanine J. ;
Henegouwen, Paul M. P. van Bergen En ;
Robinso, Dominic J. ;
Oliveira, Sabrina .
THERANOSTICS, 2020, 10 (05) :2436-2452
[6]   Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment [J].
de Maar, Josanne Sophia ;
Sofias, Alexandros Marios ;
Siegel, Tiffany Porta ;
Vreeken, Rob J. ;
Moonen, Chrit ;
Bos, Clemens ;
Deckers, Roel .
THERANOSTICS, 2020, 10 (04) :1884-1909
[7]   Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery [J].
Dhaliwal, Alexander ;
Zheng, Gang .
THERANOSTICS, 2019, 9 (26) :8091-8108
[8]   Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications [J].
Duan, Lei ;
Yang, Li ;
Jin, Juan ;
Yang, Fang ;
Liu, Dong ;
Hu, Ke ;
Wang, Qinxin ;
Yue, Yuanbin ;
Gu, Ning .
THERANOSTICS, 2020, 10 (02) :462-483
[9]   Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy [J].
Garbuzenko, Olga B. ;
Kuzmov, Andriy ;
Taratula, Oleh ;
Pine, Sharon R. ;
Minko, Tamara .
THERANOSTICS, 2019, 9 (26) :8362-8376
[10]   Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect [J].
Goos, Jeroen A. C. M. ;
Cho, Andrew ;
Carter, Lukas M. ;
Dilling, Thomas R. ;
Davydova, Maria ;
Mandleywala, Komal ;
Puttick, Simon ;
Gupta, Abhishek ;
Price, William S. ;
Quinn, John F. ;
Whittaker, Michael R. ;
Lewis, Jason S. ;
Davis, Thomas P. .
THERANOSTICS, 2020, 10 (02) :567-584