CHEBYSHEV-GRUSS TYPE INEQUALITIES ON TIME SCALES VIA TWO LINEAR ISOTONIC FUNCTIONALS

被引:4
作者
Nikolova, Ludmila [1 ]
Varosanec, Sanja [2 ]
机构
[1] Univ Sofia, Dept Math & Informat, Sofia, Bulgaria
[2] Univ Zagreb, Dept Math, Zagreb, Croatia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 04期
关键词
The Chebyshev-Gruss inequality; fractional integral operator; isotonic linear functional; time scale; INTEGRAL-INEQUALITIES;
D O I
10.7153/mia-19-105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a generalization of the Chebyshev-Gruss inequality by using the concept of derivative on time scales combined with application of the Chebyshev inequality involving two linear isotonic functionals. This approach covers integral case, discrete case, results from fractional and quantum calculus.
引用
收藏
页码:1417 / 1427
页数:11
相关论文
共 20 条
  • [1] Inequalities on time scales: A survey
    Agarwal, R
    Bohner, M
    Peterson, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04): : 535 - 557
  • [2] Integral Inequalities on Time Scales via the Theory of Isotonic Linear Functionals
    Anwar, Matloob
    Bibi, Rabia
    Bohner, Martin
    Pecaric, Josip
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [3] Baleanu D., 2014, CHINESE J MATH, V2014, P1
  • [4] Belarbi S., 2009, J. Inequal. Pure Appl. Math., V10, P1
  • [5] Bohner M, 2003, ADVANCES IN DYNAMIC EQUATIONS ON TIME SCALES, P1
  • [6] Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
  • [7] Brahim K., 2013, MALAYA J MAT, V3, P21
  • [8] Dahmani Z, 2011, Acta Univ Apulansis, V27, P217
  • [9] Dragomir SS, 2000, INDIAN J PURE AP MAT, V31, P397
  • [10] FINK A. M., 1993, CLASSICAL NEW INEQUA