Ubiquitin-dependent protein degradation

被引:1450
作者
Hochstrasser, M
机构
[1] Dept. of Biochem. and Molec. Biology, University of Chicago, Chicago, IL 60637
关键词
proteasome; 26S protease; deubiquitinating enzyme; yeast; cell cycle;
D O I
10.1146/annurev.genet.30.1.405
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A growing number of cellular regulatory mechanisms are being linked to protein modification by the polypeptide ubiquitin. These include key transitions in the cell cycle, class I antigen processing, signal transduction pathways, and receptor-mediated endocytosis. In most, but not all, of these examples, ubiquitination of a protein leads to its degradation by the 26S proteasome. Following attachment of ubiquitin to a substrate and binding of the ubiquitinated protein to the proteasome, the bound substrate must be unfolded (and eventually deubiquitinated) and translocated through a narrow set of channels that leads to the proteasome interior, where the polypeptide is cleaved into short peptides. Protein ubiquitination and deubiquitination are both mediated by large enzyme families, and the proteasome itself comprises a family of related but functionally distinct particles. This diversity underlies both the high substrate specificity of the ubiquitin system and the variety of regulatory mechanisms that it serves.
引用
收藏
页码:405 / 439
页数:35
相关论文
共 116 条
[1]   A RECOGNITION COMPONENT OF THE UBIQUITIN SYSTEM IS REQUIRED FOR PEPTIDE-TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
ALAGRAMAM, K ;
NAIDER, F ;
BECKER, JM .
MOLECULAR MICROBIOLOGY, 1995, 15 (02) :225-234
[2]   STIMULATION-DEPENDENT I-KAPPA-B-ALPHA PHOSPHORYLATION MARKS THE NF-KAPPA-B INHIBITOR FOR DEGRADATION VIA THE UBIQUITIN-PROTEASOME PATHWAY [J].
ALKALAY, I ;
YARON, A ;
HATZUBAI, A ;
ORIAN, A ;
CIECHANOVER, A ;
BEN-NERIAH, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10599-10603
[3]   CLOSING THE CELL-CYCLE CIRCLE IN YEAST - G2 CYCLIN PROTEOLYSIS INITIATED AT MITOSIS PERSISTS UNTIL THE ACTIVATION OF G1 CYCLINS IN THE NEXT CYCLE [J].
AMON, A ;
IRNIGER, S ;
NASMYTH, K .
CELL, 1994, 77 (07) :1037-1050
[4]   E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins [J].
Aristarkhov, A ;
Eytan, E ;
Moghe, A ;
Admon, A ;
Hershko, A ;
Ruderman, JV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4294-4299
[5]   STRESS RESISTANCE IN SACCHAROMYCES-CEREVISIAE IS STRONGLY CORRELATED WITH ASSEMBLY OF A NOVEL TYPE OF MULTIUBIQUITIN CHAIN [J].
ARNASON, T ;
ELLISON, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :7876-7883
[6]   Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2(EPF) and RAD6 are recognized by 26 S proteasome subunit 5 [J].
Baboshina, OV ;
Haas, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (05) :2823-2831
[7]   THE DEGRADATION SIGNAL IN A SHORT-LIVED PROTEIN [J].
BACHMAIR, A ;
VARSHAVSKY, A .
CELL, 1989, 56 (06) :1019-1032
[8]   SPECIFIC COMPLEX-FORMATION BETWEEN YEAST RAD6 AND RAD18 PROTEINS - A POTENTIAL MECHANISM FOR TARGETING RAD6 UBIQUITIN-CONJUGATING ACTIVITY TO DNA-DAMAGE SITES [J].
BAILLY, V ;
LAMB, J ;
SUNG, P ;
PRAKASH, S ;
PRAKASH, L .
GENES & DEVELOPMENT, 1994, 8 (07) :811-820
[9]  
BAKER RT, 1992, J BIOL CHEM, V267, P23364
[10]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189