A refinement of Ramanujan's factorial approximation

被引:17
作者
Hirschhorn, Michael D. [1 ]
Villarino, Mark B. [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Costa Rica, Escuela Matemat, San Jose 11501, Costa Rica
关键词
Ramanujan; Stirling's formula; GAMMA FUNCTION;
D O I
10.1007/s11139-013-9494-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new proof of the monotonicity of the correction term theta(n) in Ramanujan's refinement of Stirling's formula. Moreover we prove that theta(n) is concave.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 5 条
[1]   On Ramanujan's double inequality for the gamma function [J].
Alzer, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :601-607
[2]   A new version of Stirling's formula [J].
Hirschhorn, Michael .
MATHEMATICAL GAZETTE, 2006, 90 (518) :286-292
[3]   On the asymptotic representation of the Euler gamma function by Ramanujan [J].
Karatsuba, EA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 135 (02) :225-240
[4]  
Ramanujan S., 1987, The Lost Notebook and Other Unpublished Papers
[5]  
Villarino M.B., 2013, MATH GAZ IN PRESS, V97