Zeta functions and complexities of middle graphs of semiregular bipartite graphs

被引:9
作者
Sato, Iwao [1 ]
机构
[1] Oyama Natl Coll Technol, Oyama, Tochigi 3230806, Japan
关键词
Zeta function; Semiregular graph; Middle graph; Complexity;
D O I
10.1016/j.disc.2014.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a determinant expression for the zeta function of the middle graph of a semiregular bipartite graph G and express the complexity of the middle graph of G by using the complexity of G. As a corollary, we obtain an explicit formula for the complexity of the middle graph of a complete bipartite graph. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 99
页数:8
相关论文
共 13 条
[1]  
Bass Hyman, 1992, International Journal of Mathematics, V3, P717, DOI DOI 10.1142/S0129167X92000357
[2]  
Cvetkovic D.M., 1979, Spectra of Graphs
[3]   A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs [J].
Foata, D ;
Zeilberger, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) :2257-2274
[4]   TRAVERSABILITY AND CONNECTIVITY OF MIDDLE GRAPH OF A GRAPH [J].
HAMADA, T ;
YOSHIMURA, I .
DISCRETE MATHEMATICS, 1976, 14 (03) :247-255
[5]  
Hashimoto Ki-ichiro, 1989, Adv. Stud. Pure Math., P211
[7]   Jacobian tori associated with a finite graph and its Abelian covering graphs [J].
Kotani, M ;
Sunada, T .
ADVANCES IN APPLIED MATHEMATICS, 2000, 24 (02) :89-110
[8]   A note on the zeta function of a graph [J].
Northshield, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) :408-410
[9]   Zeta functions and complexities of a semiregular bipartite graph and its line graph [J].
Sato, Iwao .
DISCRETE MATHEMATICS, 2007, 307 (02) :237-245
[10]  
Serre Jean-Pierre, 1980, Trees