Conformal two-boundary loop model on the annulus

被引:28
作者
Dubail, Jerome [2 ]
Jacobsen, Jesper Lykke [1 ,2 ]
Saleur, Hubert [2 ,3 ]
机构
[1] LPTENS, F-75231 Paris, France
[2] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
关键词
BETHE-ANSATZ SOLUTION; OPEN XXZ CHAIN; ALGEBRAIC APPROACH; PERCOLATION;
D O I
10.1016/j.nuclphysb.2008.12.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the two-boundary extension of a loop model-corresponding to the dense phase of the O(n) model, or to the Q = n(2) state Potts model-in the critical regime -2 < n <= 2. This model is defined on an annulus of aspect ratio tau. Loops touching the left, right, or both rims of the annulus are distinguished by arbitrary (real) weights which moreover depend on whether they wrap the periodic direction. Any value of these weights corresponds to a conformally invariant boundary condition. We obtain the exact seven-parameter partition function in the continuum limit, as a function of tau, by a combination of algebraic and field theoretical arguments. As a specific application we derive some new crossing formulae for percolation clusters. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:430 / 459
页数:30
相关论文
共 30 条
[1]  
AFFLECK I, 2008, 2008 HOUCH SUMM SCH
[2]   Finite size effects in the XXZ and sine-Gordon models with two boundaries [J].
Ahn, C ;
Nepomechie, RI .
NUCLEAR PHYSICS B, 2004, 676 (03) :637-658
[3]  
BOURGINE JE, HEPTH08113252
[4]   Linking numbers for self-avoiding loops and percolation: Application to the spin quantum Hall transition [J].
Cardy, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3507-3510
[5]   Crossing formulae for critical percolation in an annulus [J].
Cardy, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41) :L565-L572
[6]  
CARDY J, 2008, 2008 HOUCH SUMM SCH
[7]   BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1989, 324 (03) :581-596
[8]   Refined Razumov-Stroganov conjectures for open boundaries [J].
de Gier, J ;
Rittenberg, V .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[9]  
DEGIER J, MATH0703338
[10]  
DUBAIL J, UNPUB