On the complexity of propositional quantification in intuitionistic logic

被引:19
作者
Kremer, P
机构
[1] Department of Philosophy, Yale University, New Haven, CT 06520-8306
关键词
D O I
10.2307/2275545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a propositionally quantified intuitionistic logic H pi+ by a natural extension of Kripke's semantics for propositional intuitionistic logic. We then show that H pi+ is recursively isomorphic to full second order classical logic. H pi+ is the intuitionistic analogue of the modal systems S5 pi+, S4 pi+, S4.2 pi+, K4 pi+, T pi+, K pi+ and B pi+, studied by Fine.
引用
收藏
页码:529 / 544
页数:16
相关论文
共 9 条
[1]  
FINE K, 1970, THEORIA, P336
[2]  
GABBAY D, 1974, ARCH MATH LOGIK GRUN, P177
[3]  
Gabbay D., 1981, SEMANTICAL INVESTIGA
[4]  
KREISEL G, 1981, REPORTS MATH LOGIC, P9
[5]  
KRIPKE S, 1963, FORMAL SYSTEMS RECUR, P92
[6]  
NERODE A., 1980, KLEENE S, V101, P181
[7]  
Rabin MichaelO., 1965, LOGIC METHODOLOGY PH, P58
[8]  
SCEDROV A, 1984, ANN PURE APPL LOGIC, P155
[9]  
SOBOLEV SK, 1977, INTUITIONISTIC PROPO, P69