Active tunable terahertz resonators based on hybrid vanadium oxide metasurface

被引:18
|
作者
Liu, Huan [1 ,2 ]
Fan, Ya-Xian [2 ]
Chen, Hong-Ge [1 ]
Li, Lin [1 ]
Tao, Zhi-Yong [1 ,2 ]
机构
[1] Harbin Engn Univ, Minist Educ China, Key Lab In Fiber Integrated Opt, Harbin 150001, Heilongjiang, Peoples R China
[2] Guilin Univ Elect Technol, Acad Marine Informat Technol, Beihai 536000, Peoples R China
基金
中国国家自然科学基金;
关键词
Resonances; Thermal control; Phase transition; Hybrid metasurface; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; METAMATERIAL; SPECTROSCOPY; ANALOG;
D O I
10.1016/j.optcom.2019.04.054
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hybrid terahertz (THz) metamaterial resonators have exhibited superior reconfigurable resonant response enabled by active materials, such as liquid crystals, graphene, and semiconductors. However, the tunable range of constitutive parameters of materials is still limited, which leads to the low modulation depth of THz devices. Unlike other phase change materials, vanadium dioxide (VO2) exhibits an insulator-to-metal transition characteristic and the conductivity can be increased by 4-5 orders of magnitude under external stimulus including electric fields, optical, and thermal pumps. Here, we propose an active tunable THz resonator based on a hybrid VO2 metasurface for thermal control. The simulated results show that by external thermal stimulation, we realize the tuning between the single and double resonant modes. The resonant peak at high frequency disappears while the low frequency peak is enhanced with the increasing temperature. The simulated surface electric fields confirm the physical mechanism of the excellent tunable performance that the L-shaped and cross resonances play a dominant role at the low and high temperature, respectively, due to the VO2 phase transition. Such a hybrid VO2 metasurface resonator with tunable characteristics will greatly promote the practical application of THz functional devices, such as modulators, sensors and fillers.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [41] Electrically reconfigurable terahertz digital metasurface based on vanadium dioxide phase transition
    Deng, Qinling
    Song, Ruirui
    Tang, Yan
    Zhou, Shaolin
    AOPC 2021: MICRO-OPTICS AND MOEMS, 2021, 12066
  • [42] Tunable multifunctional terahertz metamaterial device based on metal-dielectric-vanadium dioxide
    Hu, Hui
    Zhang, Hongyu
    Jiang, Haoqing
    Cui, Zijian
    Wang, Yue
    Wu, Di
    OPTICS AND LASER TECHNOLOGY, 2025, 181
  • [43] Terahertz polarization modulator based on metasurface
    He, Jingwen
    Xie, Zhenwei
    Wang, Sen
    Wang, Xinke
    Kan, Qiang
    Zhang, Yan
    JOURNAL OF OPTICS, 2015, 17 (10)
  • [44] Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Zhou, Chaobiao
    Xu, Chen
    Xiao, Shuyuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 104 : 229 - 232
  • [45] Terahertz Wave Tunable Metalens Based on Phase Change Material Coded Metasurface
    Zhang, Peng
    Fang, Bo
    Zhao, Tianqi
    Li, Chenxia
    Shen, Changyu
    Hong, Zhi
    Jing, Xufeng
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (23) : 7162 - 7168
  • [46] Independently tunable bifunctional terahertz metasurface based on double-layer graphene
    Wang, Yuxin
    Yang, Rongcao
    Zhao, Yijia
    Li, Zhaohua
    Zhang, Wenmei
    Tian, Jinping
    OPTICAL MATERIALS, 2022, 132
  • [47] Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiang, Gong
    Rong, Zong
    Hui, Li
    Tao, Duan
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (03)
  • [48] Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
    Jiao, Xiao-Fei
    Zhang, Zi-Heng
    Li, Tong
    Xu, Yun
    Song, Guo-Feng
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 9
  • [49] Switchable and Tunable Terahertz Metamaterial Based on Vanadium Dioxide and Photosensitive Silicon
    Zhang, Xin
    Wang, Guan
    Liu, Jia
    Zuo, Shiyi
    Li, Meichen
    Yang, Shuang
    Jia, Yang
    Gao, Yachen
    NANOMATERIALS, 2023, 13 (14)
  • [50] Tunable Broadband Terahertz Perfect Absorber Design Based on Vanadium Dioxide
    Zhang Ting
    Yang Sen
    Yu XinYing
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (21)