An Improved Conjugate Gradient Neural Networks Based on a Generalized Armijo Search Method

被引:0
作者
Zhang, Bingjie [1 ]
Gao, Tao [1 ]
Li, Long [2 ]
Sun, Zhanquan [3 ]
Wang, Jian [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
[2] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Peoples R China
[3] Shandong Comp Sci Ctr, Shandong Prov Key Lab Comp Networks, Natl Supercomp Ctr Jinan, Jinan 250014, Shandong, Peoples R China
来源
NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV | 2017年 / 10637卷
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Conjugate gradient method; Backpropagation; Generalized Armijo search; Neural networks; CONVERGENCE;
D O I
10.1007/978-3-319-70093-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, by constructing a generalized Armijo search method, a novel conjugate gradient (CG) model has been proposed to training a common three-layer backpropagation (BP) neural network. Compared with the classical gradient descent method, this algorithm efficiently accelerates the convergence speed due to the existence of the additional conjugate direction. Essentially, the optimal learning rate of each epoch is determined by the given inexact line search strategy. The presented model does not significantly increase the computational cost in dealing with real applications. Two benchmark simulations have been performed to illustrate the promising advantages of the proposed algorithm.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 28 条
[1]  
[Anonymous], 1952, METHOD CONJUGATE GRA
[2]  
[Anonymous], 2016, IEEE T CYBERN
[3]  
Dai Y. H., 2000, Nonlinear Conjugate Gradient Methods
[4]  
Erkaymaz O., 2017, 2017 25 SIGN PROC CO
[5]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[6]   Line search methods with guaranteed asymptotical convergence to an improving local optimum of multimodal functions [J].
Gomes Vieira, Douglas Alexandre ;
Lisboa, Adriano Chaves .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (01) :38-46
[7]   Natural conjugate gradient training of multilayer perceptrons [J].
Gonzalez, Ana ;
Dorronsoro, Jose R. .
NEUROCOMPUTING, 2008, 71 (13-15) :2499-2506
[8]   A comparison of neural network approaches for on-line prediction in IGRT [J].
Goodband, J. H. ;
Haas, O. C. L. ;
Mills, J. A. .
MEDICAL PHYSICS, 2008, 35 (03) :1113-1122
[9]  
Hagan M.T., 1996, Neural Network Design
[10]   Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays [J].
Li, Xiaodi ;
Rakkiyappan, R. ;
Velmurugan, G. .
INFORMATION SCIENCES, 2015, 294 :645-665