Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform

被引:36
|
作者
Papadiamantis, Anastasios G. [1 ,2 ]
Janes, Jaak [3 ]
Voyiatzis, Evangelos [1 ]
Sikk, Lauri [3 ]
Burk, Jaanus [3 ]
Burk, Peeter [3 ]
Tsoumanis, Andreas [1 ]
Ha, My Kieu [4 ]
Yoon, Tae Hyun [4 ,5 ]
Valsami-Jones, Eugenia [2 ]
Lynch, Iseult [2 ]
Melagraki, Georgia [6 ]
Tamm, Kaido [3 ]
Afantitis, Antreas [1 ]
机构
[1] NovaMech Ltd, CY-1065 Nicosia, Cyprus
[2] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
[3] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
[4] Hanyang Univ, Coll Nat Sci, Dept Chem, Seoul 04763, South Korea
[5] Hanyang Univ, Inst Next Generat Mat Design, Seoul 04763, South Korea
[6] Hellen Mil Acad, Div Phys Sci & Applicat, Vari 16672, Greece
基金
欧盟地平线“2020”; 新加坡国家研究基金会;
关键词
cytotoxicity; metal oxide nanoparticles; Isalos analytics platform; computational descriptors; in silico modelling; machine learning; atomistic descriptors; OXIDATIVE STRESS; SILVER NANOPARTICLES; ZINC-OXIDE; TOXICITY; NANOMATERIALS; SIZE; QSAR; VALIDATION; MODEL; TOOLS;
D O I
10.3390/nano10102017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A literature curated dataset containing 24 distinct metal oxide (MexOy) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of MexOy NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by MexOy NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the MexOy conduction band (E-C), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v perpendicular to Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project's Integrated Approach to Testing and Assessment (IATA).
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] The Cytotoxicity of Metal Nanoparticles Depends on Their Synergistic Interactions
    Korzeniowska, Barbara
    Fonseca, Micaella P.
    Gorshkov, Vladimir
    Skytte, Lilian
    Rasmussen, Kaare L.
    Schroder, Henrik D.
    Kjeldsen, Frank
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2020, 37 (08)
  • [22] Nano-QSAR models for predicting cytotoxicity of metal oxide nanoparticles (MONPs) to E-coli
    Zhou, Zhengwei
    Tang, Xinwen
    Dai, Wen
    Shi, Jingjie
    Chen, Haiqun
    CANADIAN JOURNAL OF CHEMISTRY, 2017, 95 (08) : 863 - 866
  • [23] In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles
    Hu, Xiaoke
    Cook, Sean
    Wang, Peng
    Hwang, Huey-min
    SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (08) : 3070 - 3072
  • [24] Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions
    Toropova, Alla P.
    Toropov, Andrey A.
    Rallo, Robert
    Leszczynska, Danuta
    Leszczynski, Jerzy
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2015, 112 : 39 - 45
  • [25] Shifting identities of metal oxide nanoparticles: Focus on inflammation
    Bhattacharya, Kunal
    Farcal, Lucian
    Fadeel, Bengt
    MRS BULLETIN, 2014, 39 (11) : 970 - 975
  • [26] Predicting the potential toxicity of the metal oxide nanoparticles using machine learning algorithms
    Sayed G.I.
    Alshater H.
    Hassanien A.E.
    Soft Computing, 2024, 28 (17-18) : 10235 - 10261
  • [27] Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles
    Puzyn, Tomasz
    Rasulev, Bakhtiyor
    Gajewicz, Agnieszka
    Hu, Xiaoke
    Dasari, Thabitha P.
    Michalkova, Andrea
    Hwang, Huey-Min
    Toropov, Andrey
    Leszczynska, Danuta
    Leszczynski, Jerzy
    NATURE NANOTECHNOLOGY, 2011, 6 (03) : 175 - 178
  • [28] Predicting cytotoxicity of engineered nanoparticles using regularized regression models: an in silico approach
    Valeriano, A.
    Bondaug, F.
    Ebardo, I.
    Almonte, P.
    Sabugaa, M. A.
    Bagnol, J. R.
    Latayada, M. J.
    Macalalag, J. M.
    Paradero, B. D.
    Mayes, M.
    Balanay, M.
    Alguno, A.
    Capangpangan, R.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2023, 34 (07) : 591 - 604
  • [29] Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO Nanoparticles
    Hsiao, I-Lun
    Huang, Yuh-Jeen
    CHEMICAL RESEARCH IN TOXICOLOGY, 2011, 24 (03) : 303 - 313
  • [30] Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles
    Cui, Li
    Wang, Xiang
    Sun, Bingbing
    Xia, Tian
    Hu, Shen
    ACS NANO, 2019, 13 (11) : 13065 - 13082