Shrinkage estimation of P(X<Y) in the exponential case with common location parameter

被引:25
作者
Baklizi, A [1 ]
El-Masri, AE [1 ]
机构
[1] Yarmouk Univ, Dept Stat, Irbid, Jordan
关键词
shrinkage estimation; exponential distribution; p-value; stress-strength model;
D O I
10.1007/s001840300277
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating R=P(X<Y) where X and Y have independent exponential distributions with parameters theta and lambda respectively and a common location parameter mu. Assuming that there is a prior guess or estimate R-0, we develop various shrinkage estimators of R that incorporate this prior information. The performance of the new estimators is investigated and compared with the maximum likelihood estimator using Monte Carlo methods. It is found that some of these estimators are very successful in taking advantage of the prior estimate available.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 10 条
[1]   SOME INFERENCE RESULTS ON PR(X LESS-THAN Y) IN THE BIVARIATE EXPONENTIAL MODEL [J].
AWAD, AM ;
HAMDAN, MA ;
AZZAM, MM .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1981, 10 (24) :2515-2525
[2]   ESTIMATION OF PR(X-LESS-THAN-Y) IN THE EXPONENTIAL CASE WITH COMMON LOCATION PARAMETER [J].
BAI, DS ;
HONG, YW .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (01) :269-282
[3]   ESTIMATION OF PR[Y LESS-THAN X] FOR TRUNCATION PARAMETER DISTRIBUTIONS [J].
BEG, MA .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1980, 9 (03) :327-345
[4]   ESTIMATION OF PROBABILITY THAT Y LESS-THAN X [J].
ENIS, P ;
GEISSER, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1971, 66 (333) :162-168
[5]  
Ghosh M., 1984, Sankhya: The Indian Journal of Statistics, V46, P383
[6]   ESTIMATION OF P(YP GREATER-THAN MAX(Y1, Y2, ..., YP-1)) IN THE EXPONENTIAL CASE [J].
GUPTA, RD ;
GUPTA, RC .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (03) :911-924
[7]  
Johnson N.L., 1992, UNIVARIATE DISCRETE
[8]   NOTE ON ESTIMATION OF PR[Y LESS-THAN X] IN EXPONENTIAL CASE [J].
JOHNSON, NL .
TECHNOMETRICS, 1975, 17 (03) :393-393
[9]   ESTIMATION OF PR (Y LESS THAN OR EQUAL TO X) IN EXPONENTIAL CASE [J].
TONG, H .
TECHNOMETRICS, 1974, 16 (04) :625-625
[10]   Shrinkage estimation of reliability for exponentially distributed lifetimes [J].
Tse, SK ;
Tso, G .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1996, 25 (02) :415-430