Derivations in differentially δ-prime rings

被引:2
作者
Taha, Iman [1 ]
Masri, Rohaidah [1 ]
Al Khalaf, Ahmad [2 ]
Tarmizi, Rawdah [1 ]
机构
[1] Sultan Idris Educ Univ, Fac Sci & Math, Dept Math, Tanjong Malim, Perak, Malaysia
[2] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2022年 / 15卷 / 02期
关键词
Derivation; prime ring; delta-prime ring; delta-ideal; CENTRALIZING MAPPINGS; LIE; COMMUTATIVITY; PRODUCTS; IDEALS;
D O I
10.29020/nybg.ejpam.v15i2.4344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative ring with identity. In this paper we extend the J.H. Maynes results, which he treatised in [27]. In particular, we prove that if R is a delta-prime ring with char R not equal 2 and I is a nonzero delta-ideal of R, where 0 not equal delta is an element of D, c is an element of R and [c, delta(c)] in the center of R, then R is commutative.
引用
收藏
页码:454 / 466
页数:13
相关论文
共 33 条
  • [1] Derivations of differentially semiprime rings
    Al Khalaf, Ahmad
    Taha, Iman
    Artemovych, Orest D.
    Aljouiiee, Abdullah
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (05)
  • [2] Derivations in differentially prime rings
    Al Khalaf, Ahmad
    Artemovych, Orest D.
    Taha, Iman
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (07)
  • [3] Artemovych OD, 2015, ALGEBRA DISCRET MATH, V20, P13
  • [4] LIE AND JORDAN STRUCTURE IN PRIME RINGS WITH DERIVATIONS
    AWTAR, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (01) : 67 - 74
  • [5] Combinatorial commutativity and finiteness conditions for rings
    Bell, HE
    Klein, AA
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (07) : 2935 - 2943
  • [6] Bergen J., 1984, Rend. Circ. Mat., Palermo (Ser. 2), V33, P99
  • [8] CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS
    BRESAR, M
    [J]. JOURNAL OF ALGEBRA, 1993, 156 (02) : 385 - 394
  • [9] Bresar M., 2007, FUNCTIONAL IDENTITIE
  • [10] Bresar M, 1989, RADOVI MAT, V5, P246