Limits on the LyC signal from z ∼ 3 sources with secure redshift and HST coverage in the E-CDFS field

被引:45
作者
Guaita, L. [1 ]
Pentericci, L. [1 ]
Grazian, A. [1 ]
Vanzella, E. [2 ]
Nonino, M. [3 ]
Giavalisco, M. [1 ,5 ]
Zamorani, G. [2 ]
Bongiorno, A. [1 ]
Cassata, P. [7 ]
Castellano, M. [1 ]
Garilli, B. [8 ]
Gawiser, E. [4 ]
Le Brun, V. [6 ]
Le Fevre, O. [6 ]
Lemaux, B. C. [6 ]
Maccagni, D. [8 ]
Merlin, E. [1 ]
Santini, P. [1 ]
Tasca, L. A. M. [6 ]
Thomas, R. [6 ,7 ]
Zucca, E. [2 ]
De Barros, S. [2 ]
Hathi, N. P. [6 ]
Amorin, R. [1 ]
Bardelli, S. [2 ]
Fontana, A. [1 ]
机构
[1] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, RM, Italy
[2] INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy
[3] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34143 Trieste, Italy
[4] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA
[5] Univ Massachusetts, Dept Astron, 710 North Pleasant St, Amherst, MA 01003 USA
[6] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France
[7] Univ Valparaiso, Inst Fis & Astron, Fac Ciencias, Gran Bretana 1111, Valparaiso, Chile
[8] INAF IASF, Via Bassini 15, I-20133 Milan, Italy
基金
欧洲研究理事会;
关键词
galaxies: star formation; galaxies: active; LYMAN CONTINUUM ESCAPE; STAR-FORMING GALAXIES; HUBBLE-SPACE-TELESCOPE; ORIGINS DEEP SURVEY; GOODS-SOUTH FIELD; YALE-CHILE MUSYC; IONIZING-RADIATION; PHOTOMETRIC REDSHIFTS; MULTIWAVELENGTH SURVEY; LUMINOSITY FUNCTION;
D O I
10.1051/0004-6361/201527597
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Determining the strength of the Lyman continuum (LyC) and the fraction of LyC escape have implications for the properties of the emitting sources at any redshift, but also for the re-ionization of the Universe at z > 6. Aims. We aim to measure the LyC signal from a sample of sources in the Chandra deep field south. We collect star-forming galaxies (SFGs) and active galactic nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space Telescope (HST) coverage and multi-wavelength photometry are available. Methods. We selected a sample of about 200 sources at z similar to 3. Taking advantage of HST resolution, we applied a careful cleaning procedure and rejected sources showing nearby clumps with different colours, which could be lower-z interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band selected Ly alpha emitters) and 8 AGN (including 6 detected in X-rays). We measured the LyC flux from aperture photometry in four narrow-band filters covering wavelengths below a 912 angstrom rest frame (3.11 < z < 3.53). We estimated the ratio between ionizing (LyC flux) and 1400 angstrom non-ionizing emissions for AGN and galaxies. Results. By running population synthesis models, we assume an average intrinsic L-gamma (1400 angstrom) /L-gamma (900 angstrom) ratio of 5 as the representative value for our sample. With this value and an average treatment of the lines of sight of the inter-galactic medium, we estimate the LyC escape fraction relative to the intrinsic value (fesc(rel)(LyC)). We do not directly detect ionizing radiation from any individual SFG, but we are able to set a 1(2)sigma upper limit of fesc(rel)(LyC) < 12(24)%. This result is consistent with other non-detections published in the literature. No meaningful limits can be calculated for the sub-sample of Ly alpha emitters. We obtain one significant direct detection for an AGN at z = 3.46, with fesc(rel)(LyC) = (72 +/- 18)%. Conclusions. Our upper limit on fesc(rel)(LyC) implies that the SFGs studied here do not present either the physical properties or the geometric conditions suitable for efficient LyC-photon escape.
引用
收藏
页数:19
相关论文
共 101 条
[21]   RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES [J].
Conroy, Charlie ;
Kratter, Kaitlin M. .
ASTROPHYSICAL JOURNAL, 2012, 755 (02)
[22]   MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX [J].
Cowie, L. L. ;
Barger, A. J. ;
Trouille, L. .
ASTROPHYSICAL JOURNAL, 2009, 692 (02) :1476-1488
[23]  
Dayal P., 2015, MNRAS UNPUB
[24]  
de Barros S, 2016, ASTRON ASTROPHYS, V585, DOI [10.1051/0004-6361/20157046, 10.1051/0004-6361/201527046]
[25]   Powering reionization: assessing the galaxy ionizing photon budget at z &lt; 10 [J].
Duncan, Kenneth ;
Conselice, Christopher J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (02) :2030-2049
[26]   Stochasticity, a variable stellar upper mass limit, binaries and star formation rate indicators [J].
Eldridge, John J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 422 (01) :794-803
[27]   Constraining the evolution of the ionizing background and the epoch of reionization with z ∼ 6 quasars.: II.: A sample of 19 quasars [J].
Fan, Xiaohui ;
Strauss, Michael A. ;
Becker, Robert H. ;
White, Richard L. ;
Gunn, James E. ;
Knapp, Gillian R. ;
Richards, Gordon T. ;
Schneider, Donald P. ;
Brinkmann, J. ;
Fukugita, Masataka .
ASTRONOMICAL JOURNAL, 2006, 132 (01) :117-136
[28]   EVOLUTION OF THE INTERGALACTIC OPACITY: IMPLICATIONS FOR THE IONIZING BACKGROUND, COSMIC STAR FORMATION, AND QUASAR ACTIVITY [J].
Faucher-Giguere, Claude-Andre ;
Lidz, Adam ;
Hernquist, Lars ;
Zaldarriaga, Matias .
ASTROPHYSICAL JOURNAL, 2008, 688 (01) :85-107
[29]   Escape fraction of the ionizing radiation from starburst galaxies at high redshifts [J].
Ferrara, Andrea ;
Loeb, Abraham .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (03) :2826-2833
[30]   Faint high-redshift AGN in the Chandra deep field south: the evolution of the AGN luminosity function and black hole demography [J].
Fiore, F. ;
Puccetti, S. ;
Grazian, A. ;
Menci, N. ;
Shankar, F. ;
Santini, P. ;
Piconcelli, E. ;
Koekemoer, A. M. ;
Fontana, A. ;
Boutsia, K. ;
Castellano, M. ;
Lamastra, A. ;
Malacaria, C. ;
Feruglio, C. ;
Mathur, S. ;
Miller, N. ;
Pannella, M. .
ASTRONOMY & ASTROPHYSICS, 2012, 537