Stability and Stabilization of Homogeneous Systems Depending on a Parameter

被引:17
|
作者
Moulay, Emmanuel [1 ]
机构
[1] IRCCyN, CNRS, UMR 6597, F-44321 Nantes, France
关键词
Homogeneous systems; nonlinear systems depending on a parameter; stability; stabilization; FINITE-TIME STABILITY;
D O I
10.1109/TAC.2009.2015560
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note deals with the Lyapunov stability and stabilization of nonlinear homogeneous systems depending on a parameter. We give a new method for proving global stability and stabilization by using a continuous topological deformation which preserves the stability. The proposed results use a condition based on a well known topological lemma, called the tube lemma. To illustrate these results, we study finite time robust stabilization of the chain of integrators.
引用
收藏
页码:1382 / 1385
页数:4
相关论文
共 50 条
  • [1] STABILITY OF PERTURBED DELAY HOMOGENEOUS SYSTEMS DEPENDING ON A PARAMETER
    Ben Rzig, Ines
    Kharrat, Thouraya
    KYBERNETIKA, 2021, 57 (01) : 141 - 159
  • [2] Stability and Stabilization of Homogeneous Stochastic Systems
    Hoshino, Kenta
    Yamashita, Yuh
    Nishimura, Yuki
    Tsubakino, Daisuke
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1229 - 1234
  • [3] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [4] Relaxed Stability and Stabilization Conditions for Linear Parameter Varying Systems
    Abdelkrim, Rihab
    Chaabane, Mohamed
    El Hajjaji, Ahmed
    SYSTEMS, AUTOMATION, AND CONTROL, 2019, 9 : 197 - 209
  • [5] Mittag-Leffler stability and stabilization of ψ-caputo fractional homogeneous systems
    Omri, Faouzi
    Mabrouk, Fehmi
    RICERCHE DI MATEMATICA, 2025,
  • [6] On Homogeneous Distributed Parameter Systems
    Polyakov, Andrey
    Efimov, Denis
    Fridman, Emilia
    Perruquetti, Wilfrid
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3657 - 3662
  • [7] A remark on the stabilization of homogeneous polynomial systems
    Jghima, H
    Outbib, R
    APPLIED MATHEMATICS LETTERS, 1996, 9 (02) : 47 - 48
  • [8] Methods for Studying the Stability of Linear Periodic Systems Depending on a Small Parameter
    Yumagulov M.G.
    Ibragimova L.S.
    Belova A.S.
    Journal of Mathematical Sciences, 2021, 258 (1) : 115 - 127
  • [9] Some Results on Stability and Stabilization of Homogeneous Time-Varying Systems
    Jerbi, Hamadi
    Kharrat, Thouraya
    Kallel, Wajdi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 177 - 188
  • [10] Some Results on Stability and Stabilization of Homogeneous Time-Varying Systems
    Hamadi Jerbi
    Thouraya Kharrat
    Wajdi Kallel
    Mediterranean Journal of Mathematics, 2013, 10 : 177 - 188